RLDOCK: A New Method for Predicting RNA–Ligand Interactions

配体(生物化学) 功能(生物学) 结合位点 核糖核酸 计算生物学 配体效率 结合能 化学 计算机科学 生物系统 算法 物理 生物 遗传学 生物化学 基因 受体 核物理学
作者
Li‐Zhen Sun,Yangwei Jiang,Yuanzhe Zhou,Shi‐Jie Chen
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:16 (11): 7173-7183 被引量:61
标识
DOI:10.1021/acs.jctc.0c00798
摘要

The ability to accurately predict the binding site, binding pose, and binding affinity for ligand-RNA binding is important for RNA-targeted drug design. Here, we describe a new computational method, RLDOCK, for predicting the binding site and binding pose for ligand-RNA binding. By developing an energy-based scoring function, we sample exhaustively all of the possible binding sites with flexible ligand conformations for a ligand-RNA pair based on the geometric and energetic scores. The model distinguishes from other approaches in three notable features. First, the model enables exhaustive scanning of all of the possible binding sites, including multiple alternative or coexisting binding sites, for a given ligand-RNA pair. Second, the model is based on a new energy-based scoring function developed here. Third, the model employs a novel multistep screening algorithm to improve computational efficiency. Specifically, first, for each binding site, we use a gird-based energy map to rank the binding sites according to the minimum Lennard-Jones potential energy for the different ligand poses. Second, for a given selected binding site, we predict the ligand pose using a two-step algorithm. In the first step, we quickly identify the probable ligand poses using a coarse-grained simplified energy function. In the second step, for each of the probable ligand poses, we predict the ligand poses using a refined energy function. Tests of the RLDOCK for a set of 230 RNA-ligand-bound structures indicate that RLDOCK can successfully predict ligand poses for 27.8, 58.3, and 69.6% of all of the test cases with the root-mean-square deviation within 1.0, 2.0, and 3.0 Å, respectively, for the top three predicted docking poses. The computational method presented here may enable the development of a new, more comprehensive framework for the prediction of ligand-RNA binding with an ensemble of RNA conformations and the metal-ion effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
远山完成签到 ,获得积分10
2秒前
3秒前
ruguo完成签到,获得积分10
3秒前
LTDJYYD完成签到,获得积分10
4秒前
CipherSage应助Sakura采纳,获得10
4秒前
CipherSage应助momo采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
柯柯驳回了Owen应助
7秒前
咸鱼发布了新的文献求助20
8秒前
che发布了新的文献求助10
9秒前
可可发布了新的文献求助10
9秒前
wishes完成签到 ,获得积分10
9秒前
10秒前
Cccsy完成签到,获得积分10
14秒前
dfuggh发布了新的文献求助10
16秒前
陈上心完成签到,获得积分20
19秒前
Fair完成签到,获得积分10
20秒前
20秒前
李爱国应助livialiu采纳,获得10
20秒前
感谢可靠赛君转发科研通微信,获得积分50
20秒前
斯文败类应助LJQ采纳,获得10
21秒前
科研通AI6应助xiongying采纳,获得10
21秒前
感谢dae转发科研通微信,获得积分50
21秒前
酷波er应助Mercury冰采纳,获得10
22秒前
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
汤朝雪完成签到,获得积分10
24秒前
感谢伶俐的芷荷转发科研通微信,获得积分50
24秒前
曲线发布了新的文献求助10
25秒前
俭朴依白完成签到,获得积分10
25秒前
25秒前
可乐完成签到,获得积分10
26秒前
金金完成签到,获得积分10
27秒前
27秒前
27秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580624
求助须知:如何正确求助?哪些是违规求助? 4665515
关于积分的说明 14756188
捐赠科研通 4606909
什么是DOI,文献DOI怎么找? 2528096
邀请新用户注册赠送积分活动 1497399
关于科研通互助平台的介绍 1466355