RLDOCK: A New Method for Predicting RNA–Ligand Interactions

配体(生物化学) 功能(生物学) 结合位点 核糖核酸 计算生物学 配体效率 结合能 化学 计算机科学 生物系统 算法 物理 生物 遗传学 生物化学 受体 基因 核物理学
作者
Li‐Zhen Sun,Yangwei Jiang,Yuanzhe Zhou,Shi‐Jie Chen
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:16 (11): 7173-7183 被引量:61
标识
DOI:10.1021/acs.jctc.0c00798
摘要

The ability to accurately predict the binding site, binding pose, and binding affinity for ligand-RNA binding is important for RNA-targeted drug design. Here, we describe a new computational method, RLDOCK, for predicting the binding site and binding pose for ligand-RNA binding. By developing an energy-based scoring function, we sample exhaustively all of the possible binding sites with flexible ligand conformations for a ligand-RNA pair based on the geometric and energetic scores. The model distinguishes from other approaches in three notable features. First, the model enables exhaustive scanning of all of the possible binding sites, including multiple alternative or coexisting binding sites, for a given ligand-RNA pair. Second, the model is based on a new energy-based scoring function developed here. Third, the model employs a novel multistep screening algorithm to improve computational efficiency. Specifically, first, for each binding site, we use a gird-based energy map to rank the binding sites according to the minimum Lennard-Jones potential energy for the different ligand poses. Second, for a given selected binding site, we predict the ligand pose using a two-step algorithm. In the first step, we quickly identify the probable ligand poses using a coarse-grained simplified energy function. In the second step, for each of the probable ligand poses, we predict the ligand poses using a refined energy function. Tests of the RLDOCK for a set of 230 RNA-ligand-bound structures indicate that RLDOCK can successfully predict ligand poses for 27.8, 58.3, and 69.6% of all of the test cases with the root-mean-square deviation within 1.0, 2.0, and 3.0 Å, respectively, for the top three predicted docking poses. The computational method presented here may enable the development of a new, more comprehensive framework for the prediction of ligand-RNA binding with an ensemble of RNA conformations and the metal-ion effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LU41完成签到,获得积分10
1秒前
无梦亦无影完成签到,获得积分10
2秒前
吕小n完成签到,获得积分10
2秒前
3秒前
落后的寄文完成签到,获得积分10
3秒前
4秒前
tfq200完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
甜美静白完成签到,获得积分10
5秒前
愉快的芒果完成签到,获得积分10
6秒前
阳阳完成签到,获得积分10
6秒前
ikun666完成签到,获得积分10
6秒前
6秒前
8秒前
9秒前
鞋子完成签到,获得积分10
9秒前
科研通AI6应助silentdoubao采纳,获得10
9秒前
9秒前
在水一方应助tumankol采纳,获得10
10秒前
10秒前
11秒前
田様应助一棵树采纳,获得10
11秒前
Angora完成签到,获得积分10
11秒前
L8完成签到,获得积分10
12秒前
12秒前
大个应助Ming采纳,获得10
12秒前
12秒前
13秒前
XRQ完成签到,获得积分10
13秒前
小石头发布了新的文献求助10
14秒前
14秒前
所所应助OVO采纳,获得10
14秒前
现代子默发布了新的文献求助10
15秒前
勤劳的白晴完成签到,获得积分10
15秒前
Goahead完成签到,获得积分10
15秒前
17秒前
17秒前
dr完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660316
求助须知:如何正确求助?哪些是违规求助? 4832930
关于积分的说明 15090040
捐赠科研通 4818943
什么是DOI,文献DOI怎么找? 2578875
邀请新用户注册赠送积分活动 1533460
关于科研通互助平台的介绍 1492226