RLDOCK: A New Method for Predicting RNA–Ligand Interactions

配体(生物化学) 功能(生物学) 结合位点 核糖核酸 计算生物学 配体效率 结合能 化学 计算机科学 生物系统 算法 物理 生物 遗传学 生物化学 基因 受体 核物理学
作者
Li‐Zhen Sun,Yangwei Jiang,Yuanzhe Zhou,Shi‐Jie Chen
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:16 (11): 7173-7183 被引量:45
标识
DOI:10.1021/acs.jctc.0c00798
摘要

The ability to accurately predict the binding site, binding pose, and binding affinity for ligand–RNA binding is important for RNA-targeted drug design. Here, we describe a new computational method, RLDOCK, for predicting the binding site and binding pose for ligand–RNA binding. By developing an energy-based scoring function, we sample exhaustively all of the possible binding sites with flexible ligand conformations for a ligand–RNA pair based on the geometric and energetic scores. The model distinguishes from other approaches in three notable features. First, the model enables exhaustive scanning of all of the possible binding sites, including multiple alternative or coexisting binding sites, for a given ligand–RNA pair. Second, the model is based on a new energy-based scoring function developed here. Third, the model employs a novel multistep screening algorithm to improve computational efficiency. Specifically, first, for each binding site, we use a gird-based energy map to rank the binding sites according to the minimum Lennard-Jones potential energy for the different ligand poses. Second, for a given selected binding site, we predict the ligand pose using a two-step algorithm. In the first step, we quickly identify the probable ligand poses using a coarse-grained simplified energy function. In the second step, for each of the probable ligand poses, we predict the ligand poses using a refined energy function. Tests of the RLDOCK for a set of 230 RNA–ligand-bound structures indicate that RLDOCK can successfully predict ligand poses for 27.8, 58.3, and 69.6% of all of the test cases with the root-mean-square deviation within 1.0, 2.0, and 3.0 Å, respectively, for the top three predicted docking poses. The computational method presented here may enable the development of a new, more comprehensive framework for the prediction of ligand–RNA binding with an ensemble of RNA conformations and the metal-ion effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kk完成签到,获得积分10
1秒前
carbonhan发布了新的文献求助10
1秒前
electricelectric应助smin采纳,获得10
1秒前
shdheud发布了新的文献求助10
2秒前
谨慎雅山完成签到,获得积分10
3秒前
小茗同学完成签到,获得积分10
3秒前
龅牙苏发布了新的文献求助10
3秒前
jeopardy完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
ding应助傲娇如天采纳,获得10
5秒前
月魂完成签到 ,获得积分10
5秒前
bkagyin应助SophiaMX采纳,获得10
6秒前
丘比特应助林晚采纳,获得30
6秒前
科研通AI6应助咕嘟咕嘟采纳,获得10
6秒前
7秒前
zxq123发布了新的文献求助10
7秒前
7秒前
8秒前
科科完成签到,获得积分10
8秒前
谨慎雅山发布了新的文献求助10
8秒前
高兴断秋发布了新的文献求助30
8秒前
8秒前
8秒前
大模型应助傲骨采纳,获得10
9秒前
冷静丸子发布了新的文献求助10
9秒前
9秒前
10秒前
月魂关注了科研通微信公众号
11秒前
11秒前
mika发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
12秒前
龅牙苏发布了新的文献求助10
12秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338621
求助须知:如何正确求助?哪些是违规求助? 4475739
关于积分的说明 13929215
捐赠科研通 4370994
什么是DOI,文献DOI怎么找? 2401582
邀请新用户注册赠送积分活动 1394626
关于科研通互助平台的介绍 1366445