RLDOCK: A New Method for Predicting RNA–Ligand Interactions

配体(生物化学) 功能(生物学) 结合位点 核糖核酸 计算生物学 配体效率 结合能 化学 计算机科学 生物系统 算法 物理 生物 遗传学 生物化学 受体 基因 核物理学
作者
Li‐Zhen Sun,Yangwei Jiang,Yuanzhe Zhou,Shi‐Jie Chen
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:16 (11): 7173-7183 被引量:61
标识
DOI:10.1021/acs.jctc.0c00798
摘要

The ability to accurately predict the binding site, binding pose, and binding affinity for ligand-RNA binding is important for RNA-targeted drug design. Here, we describe a new computational method, RLDOCK, for predicting the binding site and binding pose for ligand-RNA binding. By developing an energy-based scoring function, we sample exhaustively all of the possible binding sites with flexible ligand conformations for a ligand-RNA pair based on the geometric and energetic scores. The model distinguishes from other approaches in three notable features. First, the model enables exhaustive scanning of all of the possible binding sites, including multiple alternative or coexisting binding sites, for a given ligand-RNA pair. Second, the model is based on a new energy-based scoring function developed here. Third, the model employs a novel multistep screening algorithm to improve computational efficiency. Specifically, first, for each binding site, we use a gird-based energy map to rank the binding sites according to the minimum Lennard-Jones potential energy for the different ligand poses. Second, for a given selected binding site, we predict the ligand pose using a two-step algorithm. In the first step, we quickly identify the probable ligand poses using a coarse-grained simplified energy function. In the second step, for each of the probable ligand poses, we predict the ligand poses using a refined energy function. Tests of the RLDOCK for a set of 230 RNA-ligand-bound structures indicate that RLDOCK can successfully predict ligand poses for 27.8, 58.3, and 69.6% of all of the test cases with the root-mean-square deviation within 1.0, 2.0, and 3.0 Å, respectively, for the top three predicted docking poses. The computational method presented here may enable the development of a new, more comprehensive framework for the prediction of ligand-RNA binding with an ensemble of RNA conformations and the metal-ion effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miaomiao发布了新的文献求助10
刚刚
小T儿发布了新的文献求助10
刚刚
馒头酶发布了新的文献求助10
1秒前
小姚完成签到,获得积分10
1秒前
浮游应助小孙的微信采纳,获得10
1秒前
shiyin发布了新的文献求助10
1秒前
1秒前
桐桐应助mark采纳,获得10
2秒前
李健的小迷弟应助mmol采纳,获得10
2秒前
2秒前
思源应助林新宇采纳,获得10
3秒前
风起人散发布了新的文献求助10
3秒前
he完成签到,获得积分10
4秒前
木木完成签到,获得积分10
4秒前
4秒前
hs完成签到,获得积分10
4秒前
Yy完成签到,获得积分10
5秒前
5秒前
5秒前
Ava应助ZDM6094采纳,获得10
6秒前
6秒前
6秒前
angel完成签到,获得积分10
6秒前
crispy发布了新的文献求助10
6秒前
假不贾发布了新的文献求助10
7秒前
feiyang发布了新的文献求助10
7秒前
wzyyyyue发布了新的文献求助30
7秒前
玉耀发布了新的文献求助20
7秒前
GHJK发布了新的文献求助10
8秒前
隐形曼青应助Gloven采纳,获得10
8秒前
miaomiao完成签到,获得积分10
8秒前
才下眉头完成签到,获得积分10
9秒前
英吉利25发布了新的文献求助10
10秒前
科研通AI6应助chenyufeng采纳,获得10
10秒前
qwert完成签到,获得积分10
10秒前
10秒前
小蘑菇应助迷路从波采纳,获得10
11秒前
u2u2完成签到,获得积分10
11秒前
林新宇发布了新的文献求助10
11秒前
一玥完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525447
求助须知:如何正确求助?哪些是违规求助? 4615623
关于积分的说明 14549371
捐赠科研通 4553692
什么是DOI,文献DOI怎么找? 2495468
邀请新用户注册赠送积分活动 1475991
关于科研通互助平台的介绍 1447742