RLDOCK: A New Method for Predicting RNA–Ligand Interactions

配体(生物化学) 功能(生物学) 结合位点 核糖核酸 计算生物学 配体效率 结合能 化学 计算机科学 生物系统 算法 物理 生物 遗传学 生物化学 基因 受体 核物理学
作者
Li‐Zhen Sun,Yangwei Jiang,Yuanzhe Zhou,Shi‐Jie Chen
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:16 (11): 7173-7183 被引量:45
标识
DOI:10.1021/acs.jctc.0c00798
摘要

The ability to accurately predict the binding site, binding pose, and binding affinity for ligand–RNA binding is important for RNA-targeted drug design. Here, we describe a new computational method, RLDOCK, for predicting the binding site and binding pose for ligand–RNA binding. By developing an energy-based scoring function, we sample exhaustively all of the possible binding sites with flexible ligand conformations for a ligand–RNA pair based on the geometric and energetic scores. The model distinguishes from other approaches in three notable features. First, the model enables exhaustive scanning of all of the possible binding sites, including multiple alternative or coexisting binding sites, for a given ligand–RNA pair. Second, the model is based on a new energy-based scoring function developed here. Third, the model employs a novel multistep screening algorithm to improve computational efficiency. Specifically, first, for each binding site, we use a gird-based energy map to rank the binding sites according to the minimum Lennard-Jones potential energy for the different ligand poses. Second, for a given selected binding site, we predict the ligand pose using a two-step algorithm. In the first step, we quickly identify the probable ligand poses using a coarse-grained simplified energy function. In the second step, for each of the probable ligand poses, we predict the ligand poses using a refined energy function. Tests of the RLDOCK for a set of 230 RNA–ligand-bound structures indicate that RLDOCK can successfully predict ligand poses for 27.8, 58.3, and 69.6% of all of the test cases with the root-mean-square deviation within 1.0, 2.0, and 3.0 Å, respectively, for the top three predicted docking poses. The computational method presented here may enable the development of a new, more comprehensive framework for the prediction of ligand–RNA binding with an ensemble of RNA conformations and the metal-ion effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由的梦露完成签到,获得积分10
刚刚
yuhong发布了新的文献求助10
1秒前
jonghuang完成签到,获得积分10
1秒前
1秒前
1秒前
卢鑫宇完成签到,获得积分20
1秒前
1秒前
3秒前
3秒前
穆尘发布了新的文献求助10
4秒前
嘻嘻发布了新的文献求助10
5秒前
afsdfds发布了新的文献求助10
5秒前
Owen应助俭朴的大有采纳,获得10
5秒前
6秒前
心心完成签到,获得积分10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
8秒前
开元完成签到,获得积分10
9秒前
10秒前
11秒前
明亮沛蓝发布了新的文献求助10
11秒前
甜滋滋发布了新的文献求助10
11秒前
11秒前
11秒前
吴怡彤发布了新的文献求助30
12秒前
今后应助123456采纳,获得10
12秒前
13秒前
14秒前
14秒前
14秒前
马大翔完成签到,获得积分0
15秒前
发仔完成签到,获得积分10
16秒前
MoriZhang发布了新的文献求助10
16秒前
共享精神应助xf采纳,获得10
17秒前
kikiaini完成签到,获得积分0
18秒前
18秒前
挽风发布了新的文献求助10
19秒前
20秒前
abiu发布了新的文献求助10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959633
求助须知:如何正确求助?哪些是违规求助? 3505879
关于积分的说明 11126688
捐赠科研通 3237840
什么是DOI,文献DOI怎么找? 1789380
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963