RLDOCK: A New Method for Predicting RNA–Ligand Interactions

配体(生物化学) 功能(生物学) 结合位点 核糖核酸 计算生物学 配体效率 结合能 化学 计算机科学 生物系统 算法 物理 生物 遗传学 生物化学 基因 受体 核物理学
作者
Li‐Zhen Sun,Yangwei Jiang,Yuanzhe Zhou,Shi‐Jie Chen
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:16 (11): 7173-7183 被引量:38
标识
DOI:10.1021/acs.jctc.0c00798
摘要

The ability to accurately predict the binding site, binding pose, and binding affinity for ligand–RNA binding is important for RNA-targeted drug design. Here, we describe a new computational method, RLDOCK, for predicting the binding site and binding pose for ligand–RNA binding. By developing an energy-based scoring function, we sample exhaustively all of the possible binding sites with flexible ligand conformations for a ligand–RNA pair based on the geometric and energetic scores. The model distinguishes from other approaches in three notable features. First, the model enables exhaustive scanning of all of the possible binding sites, including multiple alternative or coexisting binding sites, for a given ligand–RNA pair. Second, the model is based on a new energy-based scoring function developed here. Third, the model employs a novel multistep screening algorithm to improve computational efficiency. Specifically, first, for each binding site, we use a gird-based energy map to rank the binding sites according to the minimum Lennard-Jones potential energy for the different ligand poses. Second, for a given selected binding site, we predict the ligand pose using a two-step algorithm. In the first step, we quickly identify the probable ligand poses using a coarse-grained simplified energy function. In the second step, for each of the probable ligand poses, we predict the ligand poses using a refined energy function. Tests of the RLDOCK for a set of 230 RNA–ligand-bound structures indicate that RLDOCK can successfully predict ligand poses for 27.8, 58.3, and 69.6% of all of the test cases with the root-mean-square deviation within 1.0, 2.0, and 3.0 Å, respectively, for the top three predicted docking poses. The computational method presented here may enable the development of a new, more comprehensive framework for the prediction of ligand–RNA binding with an ensemble of RNA conformations and the metal-ion effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MISSIW完成签到,获得积分10
1秒前
难过梦竹完成签到,获得积分10
1秒前
橙子完成签到,获得积分10
1秒前
小仙虎殿下完成签到 ,获得积分10
3秒前
认真的香芦完成签到 ,获得积分10
7秒前
yufanhui应助坚强的笑天采纳,获得10
8秒前
9秒前
爱学习发布了新的文献求助10
10秒前
alixy完成签到,获得积分10
16秒前
小cc完成签到 ,获得积分0
21秒前
医皛生完成签到 ,获得积分10
22秒前
yufanhui应助坚强的笑天采纳,获得10
24秒前
LSP完成签到,获得积分10
25秒前
28秒前
28秒前
Nerissa完成签到,获得积分10
29秒前
木木夕发布了新的文献求助20
30秒前
诚心闭月完成签到,获得积分10
30秒前
和谐的芷天完成签到,获得积分10
32秒前
稚气满满完成签到 ,获得积分10
32秒前
34秒前
弧光完成签到 ,获得积分10
34秒前
sweater发布了新的文献求助10
35秒前
luosong完成签到,获得积分10
36秒前
自信的冬日完成签到,获得积分10
36秒前
DTL哈哈完成签到 ,获得积分10
37秒前
yufanhui应助坚强的笑天采纳,获得10
39秒前
Guoshibo完成签到,获得积分10
39秒前
米花完成签到 ,获得积分10
39秒前
丘比特应助科研通管家采纳,获得10
40秒前
Ava应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
爆米花应助科研通管家采纳,获得10
40秒前
陈军应助科研通管家采纳,获得20
40秒前
Clover04应助科研通管家采纳,获得10
40秒前
隐形曼青应助科研通管家采纳,获得10
40秒前
Jasper应助科研通管家采纳,获得10
40秒前
田様应助科研通管家采纳,获得10
40秒前
iNk应助科研通管家采纳,获得20
40秒前
小马甲应助科研通管家采纳,获得10
40秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139810
求助须知:如何正确求助?哪些是违规求助? 2790682
关于积分的说明 7796255
捐赠科研通 2447121
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601176