Tunable Electromagnetically Induced Transparency-Like in Graphene metasurfaces and its Application as a Refractive Index Sensor

材料科学 慢光 谐振器 光电子学 电磁感应透明 石墨烯 光学 时域有限差分法 折射率 耦合模理论 物理 光子晶体 纳米技术
作者
Zhongpeng Jia,Li Huang,Jiangbin Su,Bin Tang
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:39 (5): 1544-1549 被引量:55
标识
DOI:10.1109/jlt.2020.3035041
摘要

We present numerical and theoretical analysis of the tunable electromagnetically induced transparency-like (EIT-like) effect based on graphene metasurfaces. The unit cells of metasurfaces are composed of a pair of parallel graphene strips and a two-split rectangular graphene ring resonator, both of which are performed as bright modes. The physical mechanism behind the EIT-like effect results from the frequency detuning and hybridization coupling of two bright modes. The FDTD simulation results show an excellent agreement with the theoretical analysis based on the coupled Lorentz oscillators model. Moreover, the transparency window of EIT-like effect can be modulated not only by changing the geometry of the nanostructure, but also by adjusting the Fermi level of graphene, allowing for an actively tunable group time delay of the light. In addition, owing to the peak frequency of the transparency window is highly sensitive to the variation of refractive index of the surrounding media, we demonstrate a refractive index sensor with sensitivity of ~ 6800 nm/RIU, and the calculated FOM can reach up to about 14.2. Therefore, our proposed nanostructure provides a feasible platform for slow light and sensing applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何何完成签到 ,获得积分10
刚刚
jackhlj完成签到,获得积分10
刚刚
香蕉觅云应助乐小佳采纳,获得10
1秒前
大胆夜绿完成签到,获得积分10
1秒前
青wu完成签到,获得积分10
1秒前
2秒前
竹筏过海应助锦鲤云间月采纳,获得30
2秒前
菠萝吹雪遇见梨花诗完成签到 ,获得积分10
2秒前
杨天水发布了新的文献求助10
3秒前
3秒前
VDC应助梁liang采纳,获得30
3秒前
chen发布了新的文献求助10
3秒前
3秒前
青wu发布了新的文献求助10
4秒前
a龙完成签到,获得积分10
4秒前
眯眯眼的老鼠完成签到,获得积分20
4秒前
无花果应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
5秒前
wanci应助嗯哼采纳,获得10
5秒前
nanan完成签到,获得积分10
5秒前
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
Hungrylunch应助科研通管家采纳,获得20
5秒前
Cassie应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
暴躁四叔应助科研通管家采纳,获得20
5秒前
Zn应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI5应助科研通管家采纳,获得30
6秒前
Zn应助科研通管家采纳,获得10
6秒前
6秒前
AN应助科研通管家采纳,获得10
6秒前
6秒前
控制小弟应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672