Temporal convolutional networks interval prediction model for wind speed forecasting

区间(图论) 可靠性(半导体) 计算机科学 预测区间 风速 分类 卷积神经网络 人工智能 风力发电 算法 机器学习 功率(物理) 工程类 数学 气象学 物理 电气工程 组合数学 量子力学
作者
Zhenhao Gan,Chaoshun Li,Jianzhong Zhou,Geng Tang
出处
期刊:Electric Power Systems Research [Elsevier]
卷期号:191: 106865-106865 被引量:129
标识
DOI:10.1016/j.epsr.2020.106865
摘要

Wind speed interval prediction is one of the most elusive and long-standing challenges in wind power production. As a data source with intermittent and fluctuant characteristics, wind speed time series require highly nonlinear temporal features for the prediction tasks. In this paper, a novel interval prediction model is proposed based on temporal convolutional networks to forecast wind speed. A temporal convolutional networks architecture layer, multiple fully connected layers using tanh activation function and an end-to-end sorting layer are respectively served as input, hidden and output layers of the temporal convolutional networks interval prediction model which can generate prediction intervals directly. Additionally, an adaptive interval construction optimization strategy is put forward to devise training labels for learning of model. Eight cases from two wind fields are implemented to test and verify the proposed method. Specially, experiments have been designed to compare the prediction accuracy and reliability between the proposed model and the most recent state-of-the-art models. The forecasting results suggest that the proposed model has a significant performance improvement on both prediction interval coverage probability and prediction interval width criteria and thus can be a practical tool for wind speed forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小强完成签到,获得积分10
刚刚
科目三应助可咳咳咳采纳,获得10
刚刚
1秒前
查查make发布了新的文献求助10
1秒前
朴实惜霜发布了新的文献求助10
2秒前
2秒前
小马甲应助Plasmacas采纳,获得10
3秒前
消失在发布了新的文献求助10
3秒前
3秒前
orixero应助lmf采纳,获得30
4秒前
4秒前
大豆终结者完成签到,获得积分10
4秒前
努力摆烂完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
6秒前
老实寒凝应助LotusLi采纳,获得10
6秒前
huo应助努力摆烂采纳,获得10
7秒前
7秒前
8秒前
8秒前
CodeCraft应助笨笨的店员采纳,获得10
9秒前
9秒前
9秒前
小强发布了新的文献求助10
9秒前
10秒前
Yuan88发布了新的文献求助10
10秒前
miao发布了新的文献求助10
10秒前
申申如也发布了新的文献求助20
10秒前
LLLLLL发布了新的文献求助10
10秒前
hhjndjnjk发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
sevenlalala发布了新的文献求助30
12秒前
591508发布了新的文献求助10
12秒前
12秒前
12秒前
完美世界应助gyx采纳,获得10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304828
求助须知:如何正确求助?哪些是违规求助? 2938788
关于积分的说明 8489918
捐赠科研通 2613267
什么是DOI,文献DOI怎么找? 1427258
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647557