Interpretable Convolutional Neural Network Through Layer-wise Relevance Propagation for Machine Fault Diagnosis

卷积神经网络 计算机科学 人工智能 模式识别(心理学) 断层(地质) 机器学习 过程(计算) 语音识别 操作系统 地质学 地震学
作者
John Grezmak,Jianjing Zhang,Peng Wang,Kenneth A. Loparo,Robert X. Gao
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:20 (6): 3172-3181 被引量:83
标识
DOI:10.1109/jsen.2019.2958787
摘要

As a state-of-the-art pattern recognition technique, convolutional neural networks (CNNs) have been increasingly investigated for machine fault diagnosis, due to their ability in analyzing nonlinear and nonstationary high-dimensional data that are typically associated with the performance degradation process of machines. A key issue of interest is how the inputs to CNNs that contain fault-related patterns are learned by CNNs to recognize discriminatory information for fault diagnosis. Understanding this link will help establish connection to the physical meaning of the diagnosis, contributing to the broad acceptance of CNNs as a trustworthy complement to physics-based reasoning by human experts. Using Layer-wise Relevance Propagation (LRP) as an indicator, this paper investigates the performance of a CNN trained by time-frequency spectra images of vibration signals measured on an induction motor. The LRP provides pixel-level representation of which values in the input signal contribute the most to the diagnosis results, thereby providing an improved understanding of how the CNN learns to distinguish between fault types from these inputs. Results have shown that the patterns learned by CNNs in the time-frequency spectra images are intuitive and consistent with respect to network re-training. Comparison with using raw time series and discrete Fourier transform coefficients as inputs reveals that time-frequency images allow for more consistent pattern recognition by CNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cxy完成签到,获得积分20
刚刚
赵先森发布了新的文献求助10
1秒前
zxfaaaaa发布了新的文献求助30
1秒前
DrugRD完成签到 ,获得积分10
5秒前
5秒前
7秒前
樊樊完成签到 ,获得积分10
8秒前
sissiarno应助kjhr采纳,获得200
9秒前
霸气小蘑菇完成签到,获得积分10
10秒前
10秒前
NAOKI应助郭先生采纳,获得10
10秒前
AaronW应助dandiaojun采纳,获得10
11秒前
无奈应助Zhangqiuyu采纳,获得10
12秒前
小二郎应助zxfaaaaa采纳,获得10
12秒前
14秒前
天真的道罡完成签到 ,获得积分10
15秒前
15秒前
_hhhjhhh完成签到,获得积分10
16秒前
16秒前
17秒前
椰子冰完成签到,获得积分10
18秒前
19秒前
Crystal发布了新的文献求助10
19秒前
慕青应助小雷采纳,获得10
19秒前
19秒前
20秒前
向日葵完成签到,获得积分10
20秒前
Owen应助Mircale采纳,获得10
20秒前
20秒前
在水一方应助科研通管家采纳,获得10
21秒前
彭于晏应助科研通管家采纳,获得10
21秒前
852应助科研通管家采纳,获得10
21秒前
积极慕梅应助科研通管家采纳,获得20
21秒前
SciGPT应助科研通管家采纳,获得10
21秒前
情怀应助科研通管家采纳,获得10
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
MoonFlows应助科研通管家采纳,获得30
21秒前
Hello应助科研通管家采纳,获得30
21秒前
慕青应助科研通管家采纳,获得10
21秒前
欧阳万仇发布了新的文献求助10
23秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164075
求助须知:如何正确求助?哪些是违规求助? 2814831
关于积分的说明 7906671
捐赠科研通 2474391
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631797
版权声明 602198