稳健性(进化)
控制理论(社会学)
线性系统
非线性系统
参数化(大气建模)
鲁棒控制
线性二次高斯控制
二次方程
计算机科学
输出反馈
系统标识
控制系统
数学
最优控制
数学优化
控制(管理)
数据建模
工程类
几何学
化学
生物化学
人工智能
数学分析
量子力学
物理
电气工程
基因
数据库
辐射传输
作者
Claudio De Persis,Pietro Tesi
标识
DOI:10.1109/tac.2019.2959924
摘要
In a paper by Willems et al., it was shown that persistently exciting data can be used to represent the input-output behavior of a linear system. Based on this fundamental result, we derive a parametrization of linear feedback systems that paves the way to solve important control problems using data-dependent linear matrix inequalities only. The result is remarkable in that no explicit system's matrices identification is required. The examples of control problems we solve include the state and output feedback stabilization, and the linear quadratic regulation problem. We also discuss robustness to noise-corrupted measurements and show how the approach can be used to stabilize unstable equilibria of nonlinear systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI