Screening of potential drug for Alzheimer’s disease: a computational study with GSK-3 β inhibition through virtual screening, docking, and molecular dynamics simulation

虚拟筛选 对接(动物) 葛兰素史克-3 分子动力学 药物发现 化学 计算模拟 药品 药理学 立体化学 广告 计算化学 生物化学 激酶 体外 生物 医学 计算机科学 计算科学 护理部
作者
Nandha Devi Elangovan,Anantha Krishnan Dhanabalan,K. Gunasekaran,Ramesh Kandimalla,Devaraj Sankarganesh
出处
期刊:Journal of Biomolecular Structure & Dynamics [Taylor & Francis]
卷期号:39 (18): 7065-7079 被引量:19
标识
DOI:10.1080/07391102.2020.1805362
摘要

The global impact of Alzheimer's disease (AD) necessitates intensive research to find appropriate and effective drugs. Many studies in AD suggested beta-amyloid plaques and neurofibrillary tangles-associated tau protein as the key targets for drug development. On the other hand, it is proved that triggering of Glycogen Synthase Kinase-3β (GSK-3β) also cause AD, therefore, GSK-3β is a potential drug target to combat AD. We, in this study, investigated the ability of small molecules to inhibit GSK-3β through virtual screening, Absorption, Distribution, Metabolism, and Excretion (ADME), induced-fit docking (IFD), molecular dynamics simulation, and binding free energy calculation. Besides, molecular docking was performed to reveal the binding and interaction of the ligand at the active site of GSK-3β. We found two compounds such as 6961 and 6966, which exhibited steady-state interaction with GSK-3β for 30 ns in molecular dynamics simulation. The compounds (6961 and 6966) also achieved a docking score of -9.05 kcal/mol and -8.11 kcal/mol, respectively, which is relatively higher than the GSK-3β II inhibitor (-6.73 kcal/mol). The molecular dynamics simulation revealed that the compounds have a stable state during overall simulation time, and lesser root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF) values compared with co-crystal. In conclusion, we suggest the two compounds (6966 and 6961) as potential leads that could be utilized as effective inhibitors of GSK-3β to combat AD. Communicated by Ramaswamy H. Sarma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助菜菜采纳,获得10
1秒前
CodeCraft应助zzzq采纳,获得10
1秒前
咪路发布了新的文献求助10
1秒前
墨扬完成签到,获得积分10
2秒前
3秒前
3秒前
chen发布了新的文献求助30
3秒前
李爱国应助昏睡的擎苍采纳,获得10
4秒前
MeiLing发布了新的文献求助10
4秒前
5秒前
5秒前
梅子酒关注了科研通微信公众号
5秒前
大白发布了新的文献求助30
6秒前
7秒前
tablerjin完成签到,获得积分10
8秒前
安白发布了新的文献求助10
9秒前
10秒前
10秒前
6528以发布了新的文献求助10
12秒前
啊嘞嘞完成签到 ,获得积分10
12秒前
nn完成签到 ,获得积分10
13秒前
YZGL应助aqaqaqa采纳,获得10
14秒前
14秒前
脑洞疼应助鸡蛋灌饼采纳,获得10
14秒前
昏睡的擎苍完成签到,获得积分10
15秒前
15秒前
15秒前
17秒前
17秒前
18秒前
18秒前
seon完成签到,获得积分10
18秒前
19秒前
liusong发布了新的文献求助10
20秒前
20秒前
欢呼忆丹发布了新的文献求助10
21秒前
liusong完成签到,获得积分10
25秒前
菜菜发布了新的文献求助10
27秒前
彪壮的幻丝完成签到 ,获得积分10
27秒前
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734505
求助须知:如何正确求助?哪些是违规求助? 3278465
关于积分的说明 10009670
捐赠科研通 2995064
什么是DOI,文献DOI怎么找? 1643182
邀请新用户注册赠送积分活动 780989
科研通“疑难数据库(出版商)”最低求助积分说明 749196