PCANet: A Simple Deep Learning Baseline for Image Classification?

MNIST数据库 模式识别(心理学) 人工智能 计算机科学 局部二进制模式 卷积神经网络 面部识别系统 深度学习 直方图 上下文图像分类 联营 线性判别分析 图像(数学)
作者
Tsung-Han Chan,Kui Jia,Shenghua Gao,Jiwen Lu,Zinan Zeng,Yi Ma
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 5017-5032 被引量:1480
标识
DOI:10.1109/tip.2015.2475625
摘要

In this work, we propose a very simple deep learning network for image classification which comprises only the very basic data processing components: cascaded principal component analysis (PCA), binary hashing, and block-wise histograms. In the proposed architecture, PCA is employed to learn multistage filter banks. It is followed by simple binary hashing and block histograms for indexing and pooling. This architecture is thus named as a PCA network (PCANet) and can be designed and learned extremely easily and efficiently. For comparison and better understanding, we also introduce and study two simple variations to the PCANet, namely the RandNet and LDANet. They share the same topology of PCANet but their cascaded filters are either selected randomly or learned from LDA. We have tested these basic networks extensively on many benchmark visual datasets for different tasks, such as LFW for face verification, MultiPIE, Extended Yale B, AR, FERET datasets for face recognition, as well as MNIST for hand-written digits recognition. Surprisingly, for all tasks, such a seemingly naive PCANet model is on par with the state of the art features, either prefixed, highly hand-crafted or carefully learned (by DNNs). Even more surprisingly, it sets new records for many classification tasks in Extended Yale B, AR, FERET datasets, and MNIST variations. Additional experiments on other public datasets also demonstrate the potential of the PCANet serving as a simple but highly competitive baseline for texture classification and object recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YG完成签到,获得积分10
刚刚
刚刚
1秒前
3秒前
4秒前
陈教授发布了新的文献求助10
4秒前
aidiresi发布了新的文献求助10
5秒前
ZhenpuWang发布了新的文献求助10
6秒前
阿龚发布了新的文献求助10
6秒前
zzzz发布了新的文献求助10
6秒前
7秒前
ich完成签到 ,获得积分20
8秒前
健忘怜雪发布了新的文献求助10
9秒前
9秒前
李健应助图图采纳,获得10
10秒前
12秒前
HUSHIYI发布了新的文献求助10
12秒前
13秒前
比耶发布了新的文献求助10
14秒前
冷艳的寻冬完成签到,获得积分10
15秒前
所所应助认真初之采纳,获得10
15秒前
anna1992发布了新的文献求助10
16秒前
火星上莛发布了新的文献求助10
17秒前
打打应助rachel03采纳,获得10
18秒前
CipherSage应助bzc采纳,获得20
20秒前
量子星尘发布了新的文献求助30
21秒前
22秒前
ich关注了科研通微信公众号
22秒前
学术射手完成签到,获得积分10
22秒前
quhayley应助tuanheqi采纳,获得30
23秒前
23秒前
张泽轩完成签到,获得积分10
23秒前
比耶完成签到,获得积分10
24秒前
24秒前
JamesPei应助JggHoo采纳,获得10
26秒前
26秒前
Archer完成签到,获得积分10
26秒前
27秒前
27秒前
ding应助宋小九采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003304
求助须知:如何正确求助?哪些是违规求助? 4248101
关于积分的说明 13235186
捐赠科研通 4047086
什么是DOI,文献DOI怎么找? 2214172
邀请新用户注册赠送积分活动 1224222
关于科研通互助平台的介绍 1144483