PCANet: A Simple Deep Learning Baseline for Image Classification?

MNIST数据库 模式识别(心理学) 人工智能 计算机科学 局部二进制模式 卷积神经网络 面部识别系统 深度学习 直方图 上下文图像分类 联营 线性判别分析 图像(数学)
作者
Tsung-Han Chan,Kui Jia,Shenghua Gao,Jiwen Lu,Zinan Zeng,Yi Ma
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 5017-5032 被引量:1480
标识
DOI:10.1109/tip.2015.2475625
摘要

In this work, we propose a very simple deep learning network for image classification which comprises only the very basic data processing components: cascaded principal component analysis (PCA), binary hashing, and block-wise histograms. In the proposed architecture, PCA is employed to learn multistage filter banks. It is followed by simple binary hashing and block histograms for indexing and pooling. This architecture is thus named as a PCA network (PCANet) and can be designed and learned extremely easily and efficiently. For comparison and better understanding, we also introduce and study two simple variations to the PCANet, namely the RandNet and LDANet. They share the same topology of PCANet but their cascaded filters are either selected randomly or learned from LDA. We have tested these basic networks extensively on many benchmark visual datasets for different tasks, such as LFW for face verification, MultiPIE, Extended Yale B, AR, FERET datasets for face recognition, as well as MNIST for hand-written digits recognition. Surprisingly, for all tasks, such a seemingly naive PCANet model is on par with the state of the art features, either prefixed, highly hand-crafted or carefully learned (by DNNs). Even more surprisingly, it sets new records for many classification tasks in Extended Yale B, AR, FERET datasets, and MNIST variations. Additional experiments on other public datasets also demonstrate the potential of the PCANet serving as a simple but highly competitive baseline for texture classification and object recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zh完成签到,获得积分10
刚刚
研友_V8Qmr8发布了新的文献求助10
1秒前
科研小崩豆完成签到,获得积分10
2秒前
SciGPT应助投石问路采纳,获得10
2秒前
ksoeeis发布了新的文献求助10
2秒前
在水一方应助星星气球采纳,获得50
3秒前
铱星完成签到,获得积分10
3秒前
ABS发布了新的文献求助30
3秒前
4秒前
朔寒发布了新的文献求助10
4秒前
路内里完成签到,获得积分10
5秒前
独特的自中完成签到,获得积分20
6秒前
务实的焦完成签到 ,获得积分10
6秒前
li发布了新的文献求助10
7秒前
HEXIN发布了新的文献求助20
7秒前
搜集达人应助赵赵采纳,获得10
7秒前
8秒前
呀呀呀呀发布了新的文献求助30
9秒前
wwzp发布了新的文献求助30
10秒前
10秒前
上官若男应助独特的自中采纳,获得10
11秒前
Larry完成签到,获得积分20
11秒前
璀璨发布了新的文献求助10
11秒前
冷静的如音完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
可爱的函函应助江峰采纳,获得10
14秒前
可爱的函函应助普萘洛尔采纳,获得10
14秒前
15秒前
16秒前
dej发布了新的文献求助30
16秒前
17秒前
17秒前
anbiii发布了新的文献求助10
17秒前
17秒前
汉堡包应助半芹采纳,获得10
18秒前
赘婿应助zxs采纳,获得10
18秒前
充电宝应助ksoeeis采纳,获得10
18秒前
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149952
求助须知:如何正确求助?哪些是违规求助? 2800974
关于积分的说明 7842886
捐赠科研通 2458475
什么是DOI,文献DOI怎么找? 1308544
科研通“疑难数据库(出版商)”最低求助积分说明 628524
版权声明 601721