Intelligent random noise modeling by the improved variational autoencoding method and its application to data augmentation

计算机科学 噪音(视频) 高斯噪声 降噪 卷积神经网络 随机噪声 合成数据 人工智能 人工神经网络 模式识别(心理学) 算法 图像(数学)
作者
Qiankun Feng,Yue Li,Hongzhou Wang
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (1): T19-T31 被引量:14
标识
DOI:10.1190/geo2019-0815.1
摘要

Deep-learning methods facilitate the development of seismic data processing methods; however, they also offer some challenges. The primary challenges are the lack of labeled samples for training, due to heterogeneity in seismic data, expensive acquisition apparatus, and data confidentiality. These problems limit the acquisition of high-quality training data. To solve this problem, we have developed variational autoencoding (VAE) to generate synthetic noise for data augmentation; however, the simplified Kullback-Leibler (KL) distance definition and parameter learning result in the outputs of the original VAE being blurry. To optimize VAE for simulating random desert noise and improve its simulation capability, here we have developed an improved VAE based on KL redefinition and learning parameter replacement. Specifically, we (1) build a training set containing desert random noise samples, (2) redefine the KL distance calculated between two Gaussian mixture densities (rather than two simple Gaussians) because the KL distance plays an important role in the learning accuracy of VAE, and (3) use [Formula: see text] rather than [Formula: see text] to improve the learning efficiency. Statistical analysis indicates that the simulated random noise is statistically indistinguishable from real noise, indicating that our improved VAE is suitable for noise modeling. We also trained a denoising convolutional neural network (DnCNN) using the simulated noise. Data augmentation conducted using the simulated noise improved the effect of DnCNN, proving that our method contributes to data augmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助贺可乐采纳,获得30
1秒前
1秒前
一一完成签到,获得积分10
2秒前
lei关闭了lei文献求助
4秒前
LEO完成签到,获得积分10
5秒前
5秒前
5秒前
伯赏浩天给伯赏浩天的求助进行了留言
5秒前
呵呜哎辉发布了新的文献求助10
6秒前
6秒前
6秒前
qweerrtt发布了新的文献求助10
8秒前
111完成签到 ,获得积分10
9秒前
9秒前
列奥维登发布了新的文献求助10
10秒前
笨笨芯发布了新的文献求助10
10秒前
Lucas应助李天采纳,获得10
10秒前
10秒前
安致远完成签到,获得积分20
12秒前
12秒前
瑶咕隆咚完成签到,获得积分10
13秒前
13秒前
迅速的衬衫完成签到,获得积分10
13秒前
心动完成签到,获得积分20
15秒前
共享精神应助杜阿拉阿拉采纳,获得10
15秒前
hxl发布了新的文献求助10
15秒前
yy应助苏苏采纳,获得10
17秒前
zzzzzzzzzzzzb发布了新的文献求助10
17秒前
17秒前
18秒前
19秒前
19秒前
海潮完成签到,获得积分10
20秒前
simpleblue发布了新的文献求助10
20秒前
酷波er应助lani采纳,获得10
21秒前
研友_VZG7GZ应助YJR采纳,获得10
21秒前
wddfz完成签到,获得积分10
21秒前
SciGPT应助pe采纳,获得10
22秒前
hxl完成签到,获得积分10
25秒前
科研通AI5应助badyoungboy采纳,获得10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737788
求助须知:如何正确求助?哪些是违规求助? 3281410
关于积分的说明 10025130
捐赠科研通 2998123
什么是DOI,文献DOI怎么找? 1645087
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749835