已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Blood Pressure Prediction Method Based on Imaging Photoplethysmography in combination with Machine Learning

光容积图 计算机科学 人工智能 血压计 血压 支持向量机 模式识别(心理学) 计算机视觉 医学 滤波器(信号处理) 放射科
作者
Meng Rong,Kaiyang Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:64: 102328-102328 被引量:62
标识
DOI:10.1016/j.bspc.2020.102328
摘要

This paper proposes a non-contact blood pressure implement (NCBP) system based on imaging photoplethysmography (IPPG) The system collects facial videos through a webcam under ambient light, and extracts pulse wave signals from the videos by means of IPPG technology. From the signals (also called IPPG signals), we extracted 26 features for estimating blood pressure (BP), and trained them through four machine learning algorithms. Finally, we selected the most accurate model for blood pressure prediction. By experimenting on 191 volunteers and comparing four models, support vector regression (SVR) is the best model for predicting blood pressure. The results of SVR are that the standard deviation (STD) and mean absolute error (MAE) of systolic blood pressure (SBP) are 3.35 mmHg, 9.97 mmHg, and those of diastolic blood pressure (DBP) are 2.58 mmHg, 7.59 mmHg respectively. We conclude that through our proposed system based on IPPG technology, blood pressure can be accurately predicted in a non-contact way. In addition, this paper proposes two new methods, the region of interest (ROI) selection method based on colormaps and robust peak extraction method, which solve the key steps in IPPG technology. Finally, we discussed the influence of light intensity on the experiment, and simplified the NCBP experimental device. The system has the potential of replacing the traditional cuff-based sphygmomanometers, and has guiding significance to the future development of blood pressure measurement devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GPTea应助小康找文献采纳,获得20
1秒前
1秒前
冰冰发布了新的文献求助10
3秒前
3秒前
卡卡罗特完成签到,获得积分20
6秒前
上官若男应助kk采纳,获得10
6秒前
XIXIXI发布了新的文献求助10
6秒前
hugo发布了新的文献求助10
8秒前
10秒前
11秒前
不周完成签到,获得积分20
12秒前
徐逊发布了新的文献求助10
13秒前
阿洁发布了新的文献求助10
14秒前
15秒前
汉堡包应助糊糊采纳,获得10
17秒前
hugo完成签到,获得积分20
18秒前
18秒前
20秒前
英姑应助王槿采纳,获得10
20秒前
阿洁完成签到,获得积分10
20秒前
xhj666发布了新的文献求助10
21秒前
22秒前
22秒前
君寻完成签到 ,获得积分10
23秒前
kk发布了新的文献求助10
24秒前
彭于晏应助科研通管家采纳,获得30
24秒前
小二郎应助科研通管家采纳,获得10
24秒前
天天快乐应助科研通管家采纳,获得10
24秒前
香蕉觅云应助科研通管家采纳,获得10
24秒前
领导范儿应助科研通管家采纳,获得10
24秒前
Ava应助科研通管家采纳,获得10
24秒前
慕青应助科研通管家采纳,获得10
25秒前
sci发布了新的文献求助10
25秒前
田様应助科研通管家采纳,获得10
25秒前
wanci应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
木兆完成签到 ,获得积分10
25秒前
Owen应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
李健应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252862
求助须知:如何正确求助?哪些是违规求助? 4416425
关于积分的说明 13749709
捐赠科研通 4288588
什么是DOI,文献DOI怎么找? 2352985
邀请新用户注册赠送积分活动 1349757
关于科研通互助平台的介绍 1309396