In situ tensile fracturing of multilayer graphene nanosheets for their in-plane mechanical properties

材料科学 石墨烯 复合材料 极限抗拉强度 脆性 缩进 断裂(地质) 分层(地质) 扫描电子显微镜 断裂力学 纳米技术 古生物学 生物 俯冲 构造学
作者
Peifeng Li,Ke Cao,Chenchen Jiang,Shang Xu,Libo Gao,Xufen Xiao,Yang Lü
出处
期刊:Nanotechnology [IOP Publishing]
卷期号:30 (47): 475708-475708 被引量:22
标识
DOI:10.1088/1361-6528/ab3cd3
摘要

The excellent mechanical properties of single- and few-layer graphene have been well-quantified and evidenced by computational methods and local indentation measurements. However, there are less experimental reports on the in-plane mechanical properties of multilayer graphene sheets, despite many practical applications in flexible electronic and energy devices (e.g. graphene flexible electronic display, battery, and storage devices) are actually based on these thicker nanosheets. Here, in-plane fracture behaviors of multilayer graphene nanosheets with thicknesses between ∼10 and 300 nm (∼10–1000 layers) are characterized and quantified by in situ scanning electron microscopy and transmission electron microscopy under tensile loading. We found that, generally, the fracture strengths of graphene nanosheets decrease as the thickness (or layers) increases; however, the fracture strain of thinner graphene sheets is less than that of thicker sheets. The fracture process of the thicker nanosheets includes the initial flattened stage, the stable elastic stage, and the rapid fracture with brittle characteristics, while the thinner nanosheets show obvious delamination between the atomic layers at fracture. This work provides critical experimental insights into the tensile fracture behavior of multilayer two-dimensional materials and a better understanding on their realistic mechanical performance for potential flexible device and composite applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
渝州人完成签到,获得积分10
刚刚
刚刚
hanna发布了新的文献求助10
刚刚
科研通AI2S应助neil采纳,获得10
1秒前
大模型应助天真思雁采纳,获得10
1秒前
酷炫过客发布了新的文献求助10
1秒前
1秒前
深情凡灵发布了新的文献求助10
2秒前
马保国123发布了新的文献求助10
2秒前
胡须完成签到,获得积分10
3秒前
jjgod发布了新的文献求助10
3秒前
muomuo发布了新的文献求助10
4秒前
湘华完成签到,获得积分10
4秒前
渝州人发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
开放鸵鸟发布了新的文献求助10
6秒前
6秒前
温暖以蓝完成签到,获得积分20
6秒前
WTF完成签到,获得积分10
7秒前
花花花花完成签到,获得积分10
7秒前
franklvlei发布了新的文献求助10
8秒前
丘比特应助湘华采纳,获得10
9秒前
9秒前
AIA7完成签到,获得积分10
9秒前
towerman完成签到,获得积分10
10秒前
花花花花发布了新的文献求助10
11秒前
11秒前
xiaoziyi666发布了新的文献求助10
11秒前
muomuo完成签到,获得积分10
11秒前
11秒前
eli完成签到,获得积分10
12秒前
ZL发布了新的文献求助10
12秒前
Jason完成签到,获得积分10
12秒前
13秒前
13秒前
朴实的乐天完成签到,获得积分10
13秒前
14秒前
towerman发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762