Robust facility location under demand uncertainty and facility disruptions

设施选址问题 计算机科学 运筹学 专业护理设施 环境科学 工程类 医学 急诊医学
作者
Chun Cheng,Yossiri Adulyasak,Louis-Martin Rousseau
出处
期刊:Omega [Elsevier]
卷期号:103: 102429-102429 被引量:67
标识
DOI:10.1016/j.omega.2021.102429
摘要

Facility location decision is strategic: the construction of a new facility is typically costly and the impact of the decision is long-lasting. Environmental changes, such as population shift and natural disasters, may cause today’s optimal location decision to perform poorly in the future. Thus, it is important to consider potential uncertainties in the design phase, while explicitly taking into account the possible customer reassignments as recourse decisions in the execution phase. This paper studies a robust fixed-charge location problem under uncertain demand and facility disruptions. To model this problem, we adopt a two-stage robust optimization framework, where the first-stage location decision is made here-and-now and the second-stage allocation decision can be deferred until the uncertainty information is revealed. We develop a column-and-constraint generation (C&CG) algorithm to solve the models exactly and benchmark it with the other C&CG algorithm in the literature. We further extend our modeling and solution schemes to facility fortification problems under uncertainties, where investment decisions are made for already existing supply chain systems to protect facilities from disruptions and against uncertain demand. We conduct extensive numerical tests to study the differences in solutions produced by the three robust models and the impacts of uncertainties on solution configuration. Results show that our C&CG algorithm can solve more instances to optimality and consume less computing time on average, compared to the benchmark algorithm. Several managerial insights are also drawn from our numerical experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andy_Cheung完成签到,获得积分10
刚刚
feng完成签到,获得积分10
1秒前
maomao发布了新的文献求助10
1秒前
leena完成签到,获得积分10
1秒前
1秒前
青衣北风发布了新的文献求助10
2秒前
feng发布了新的文献求助10
2秒前
guygun发布了新的文献求助10
5秒前
小灰灰完成签到,获得积分10
6秒前
6秒前
海鸥海鸥发布了新的文献求助10
7秒前
青衣北风完成签到,获得积分10
7秒前
9秒前
MasterE完成签到,获得积分10
10秒前
我的小伙伴应助feng采纳,获得10
10秒前
善学以致用应助feng采纳,获得10
10秒前
11秒前
11秒前
gaoww发布了新的文献求助10
11秒前
小二发布了新的文献求助10
15秒前
solobang发布了新的文献求助10
16秒前
CodeCraft应助Jocelyn7采纳,获得10
16秒前
秋之月完成签到,获得积分10
16秒前
17秒前
cheche关注了科研通微信公众号
17秒前
18秒前
科研小民工应助kento采纳,获得50
19秒前
完美世界应助小萌采纳,获得10
20秒前
20秒前
gaoww完成签到,获得积分10
20秒前
21秒前
WZ0904发布了新的文献求助10
21秒前
21秒前
lab完成签到 ,获得积分0
21秒前
小蘑菇应助今今采纳,获得10
22秒前
CodeCraft应助秋之月采纳,获得10
22秒前
I1waml完成签到 ,获得积分10
22秒前
22秒前
guygun完成签到,获得积分10
22秒前
zho发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824