Robust facility location under demand uncertainty and facility disruptions

设施选址问题 计算机科学 运筹学 专业护理设施 环境科学 工程类 急诊医学 医学
作者
Chun Cheng,Yossiri Adulyasak,Louis-Martin Rousseau
出处
期刊:Omega [Elsevier]
卷期号:103: 102429-102429 被引量:67
标识
DOI:10.1016/j.omega.2021.102429
摘要

Facility location decision is strategic: the construction of a new facility is typically costly and the impact of the decision is long-lasting. Environmental changes, such as population shift and natural disasters, may cause today’s optimal location decision to perform poorly in the future. Thus, it is important to consider potential uncertainties in the design phase, while explicitly taking into account the possible customer reassignments as recourse decisions in the execution phase. This paper studies a robust fixed-charge location problem under uncertain demand and facility disruptions. To model this problem, we adopt a two-stage robust optimization framework, where the first-stage location decision is made here-and-now and the second-stage allocation decision can be deferred until the uncertainty information is revealed. We develop a column-and-constraint generation (C&CG) algorithm to solve the models exactly and benchmark it with the other C&CG algorithm in the literature. We further extend our modeling and solution schemes to facility fortification problems under uncertainties, where investment decisions are made for already existing supply chain systems to protect facilities from disruptions and against uncertain demand. We conduct extensive numerical tests to study the differences in solutions produced by the three robust models and the impacts of uncertainties on solution configuration. Results show that our C&CG algorithm can solve more instances to optimality and consume less computing time on average, compared to the benchmark algorithm. Several managerial insights are also drawn from our numerical experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助开朗若之采纳,获得30
1秒前
aaaaaa完成签到,获得积分10
1秒前
lin发布了新的文献求助10
1秒前
Akim应助pandaccc采纳,获得10
2秒前
2秒前
OO发布了新的文献求助10
2秒前
3秒前
rushui01发布了新的文献求助10
3秒前
渡花应助时间有泪1212采纳,获得10
4秒前
5秒前
单词量发布了新的文献求助50
5秒前
852应助vertl采纳,获得10
5秒前
6秒前
6秒前
zhuling发布了新的文献求助10
6秒前
李健的小迷弟应助Siriya采纳,获得10
6秒前
海派甜心完成签到,获得积分10
7秒前
杨宗智发布了新的文献求助10
8秒前
王耳朵完成签到,获得积分10
8秒前
8秒前
8秒前
张菁完成签到,获得积分10
9秒前
dai发布了新的文献求助10
11秒前
优雅夕阳发布了新的文献求助30
11秒前
11秒前
12秒前
14秒前
小杜发布了新的文献求助10
14秒前
15秒前
小蘑菇应助YGYANG采纳,获得10
15秒前
闪闪万言发布了新的文献求助10
15秒前
16秒前
风清扬应助曦耀采纳,获得30
16秒前
17秒前
一一应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
一一应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633094
求助须知:如何正确求助?哪些是违规求助? 4728561
关于积分的说明 14985128
捐赠科研通 4791070
什么是DOI,文献DOI怎么找? 2558755
邀请新用户注册赠送积分活动 1519164
关于科研通互助平台的介绍 1479502