Interior and Exterior Decoration of Transition Metal Oxide Through Cu0/Cu+ Co-Doping Strategy for High-Performance Supercapacitor

超级电容器 材料科学 电化学 电容 氧化物 电极 兴奋剂 过渡金属 非阻塞I/O 化学工程 纳米结构 纳米技术 电导率 光电子学 冶金 催化作用 化学 物理化学 生物化学 工程类
作者
Weifeng Liu,Hui Zhang,Yanan Zhang,Yifan Zheng,Nishuang Liu,Jun Su,Yihua Gao
出处
期刊:Nano-micro Letters [Springer Nature]
卷期号:13 (1) 被引量:22
标识
DOI:10.1007/s40820-021-00590-x
摘要

Abstract Although CoO is a promising electrode material for supercapacitors due to its high theoretical capacitance, the practical applications still suffering from inferior electrochemical activity owing to its low electrical conductivity, poor structural stability and inefficient nanostructure. Herein, we report a novel Cu 0 /Cu + co-doped CoO composite with adjustable metallic Cu 0 and ion Cu + via a facile strategy. Through interior (Cu + ) and exterior (Cu 0 ) decoration of CoO, the electrochemical performance of CoO electrode has been significantly improved due to both the beneficial flower-like nanostructure and the synergetic effect of Cu 0 /Cu + co-doping, which results in a significantly enhanced specific capacitance (695 F g −1 at 1 A g −1 ) and high cyclic stability (93.4% retention over 10,000 cycles) than pristine CoO. Furthermore, this co-doping strategy is also applicable to other transition metal oxide (NiO) with enhanced electrochemical performance. In addition, an asymmetric hybrid supercapacitor was assembled using the Cu 0 /Cu + co-doped CoO electrode and active carbon, which delivers a remarkable maximal energy density (35 Wh kg −1 ), exceptional power density (16 kW kg −1 ) and ultralong cycle life (91.5% retention over 10,000 cycles). Theoretical calculations further verify that the co-doping of Cu 0 /Cu + can tune the electronic structure of CoO and improve the conductivity and electron transport. This study demonstrates a facile and favorable strategy to enhance the electrochemical performance of transition metal oxide electrode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助羊羊采纳,获得30
1秒前
龙川完成签到,获得积分10
3秒前
沉默凌寒完成签到,获得积分10
4秒前
5秒前
orixero应助松谦采纳,获得10
7秒前
大个应助明亮依琴采纳,获得10
7秒前
认真的裙子完成签到,获得积分10
9秒前
菜菜完成签到 ,获得积分10
9秒前
allrubbish发布了新的文献求助10
9秒前
生动朝雪发布了新的文献求助10
11秒前
研友_VZG7GZ应助感性的又槐采纳,获得10
13秒前
13秒前
15秒前
seal完成签到 ,获得积分10
16秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
斯文败类应助郝宝真采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
oceanao应助科研通管家采纳,获得10
17秒前
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
17秒前
卫澜发布了新的文献求助10
17秒前
18秒前
20秒前
快乐凌寒发布了新的文献求助10
21秒前
22秒前
123发布了新的文献求助10
23秒前
25秒前
caimiemie发布了新的文献求助10
26秒前
禹代秋完成签到,获得积分10
26秒前
冰中发布了新的文献求助10
27秒前
明亮依琴发布了新的文献求助10
27秒前
30秒前
Ly发布了新的文献求助10
35秒前
44秒前
ding应助天降采纳,获得10
44秒前
Owen应助iceteaser采纳,获得10
45秒前
45秒前
YY发布了新的文献求助10
46秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165402
求助须知:如何正确求助?哪些是违规求助? 2816499
关于积分的说明 7912856
捐赠科研通 2476071
什么是DOI,文献DOI怎么找? 1318651
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388