Automatic Segmentation of Gross Target Volume of Nasopharynx Cancer using Ensemble of Multiscale Deep Neural Networks with Spatial Attention

人工智能 计算机科学 分割 卷积神经网络 深度学习 模式识别(心理学) 稳健性(进化) 人工神经网络 图像分割 计算机视觉 生物化学 基因 化学
作者
Haochen Mei,Wenhui Lei,Ran Gu,Shan Ye,Zhengwentai Sun,Shichuan Zhang,Guotai Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2101.11254
摘要

Radiotherapy is the main treatment modality for nasopharynx cancer. Delineation of Gross Target Volume (GTV) from medical images such as CT and MRI images is a prerequisite for radiotherapy. As manual delineation is time-consuming and laborious, automatic segmentation of GTV has a potential to improve this process. Currently, most of the deep learning-based automatic delineation methods of GTV are mainly performed on medical images like CT images. However, it is challenged by the low contrast between the pathology regions and surrounding soft tissues, small target region, and anisotropic resolution of clinical CT images. To deal with these problems, we propose a 2.5D Convolutional Neural Network (CNN) to handle the difference of inplane and through-plane resolution. Furthermore, we propose a spatial attention module to enable the network to focus on small target, and use channel attention to further improve the segmentation performance. Moreover, we use multi-scale sampling method for training so that the networks can learn features at different scales, which are combined with a multi-model ensemble method to improve the robustness of segmentation results. We also estimate the uncertainty of segmentation results based on our model ensemble, which is of great importance for indicating the reliability of automatic segmentation results for radiotherapy planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助夏侯德东采纳,获得30
1秒前
Swilder完成签到 ,获得积分10
2秒前
哈哈哈哈发布了新的文献求助10
3秒前
田様应助HYLynn采纳,获得10
3秒前
Pendragon完成签到,获得积分10
4秒前
5秒前
科目三应助ZZQ采纳,获得10
6秒前
打打应助小皮不皮采纳,获得10
6秒前
Lucas应助啪唧采纳,获得10
7秒前
星辰大海应助怡然小蚂蚁采纳,获得10
7秒前
7秒前
GXY完成签到,获得积分10
8秒前
小将完成签到 ,获得积分10
9秒前
Yuksn发布了新的文献求助20
11秒前
研友_85YNe8完成签到,获得积分10
11秒前
Camellia发布了新的文献求助10
12秒前
小崔完成签到,获得积分10
13秒前
14秒前
Cbbaby发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
bin0920完成签到,获得积分10
16秒前
英姑应助繁荣的无招采纳,获得10
16秒前
川上富江完成签到 ,获得积分10
17秒前
璟晔发布了新的文献求助10
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
啪唧发布了新的文献求助10
20秒前
光明磊落完成签到,获得积分10
21秒前
21秒前
希望天下0贩的0应助润色采纳,获得30
22秒前
文章必发发布了新的文献求助10
22秒前
22秒前
22秒前
23秒前
23秒前
领导范儿应助wm采纳,获得10
24秒前
青烟发布了新的文献求助10
24秒前
zain完成签到 ,获得积分10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958212
求助须知:如何正确求助?哪些是违规求助? 3504372
关于积分的说明 11118239
捐赠科研通 3235651
什么是DOI,文献DOI怎么找? 1788411
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802565