Semi-supervised learned sinogram restoration network for low-dose CT image reconstruction

迭代重建 人工智能 计算机科学 模式识别(心理学) 深度学习 监督学习 特征(语言学) 无监督学习 人工神经网络 语言学 哲学
作者
Mingqiang Meng,Sui Li,Lisha Yao,Danyang Li,Manman Zhu,Qi Gao,Qi Xie,Qian Zhao,Zhaoying Bian,Jing Huang,Deyu Meng,Dong Zeng,Jianhua Ma,Pengwei Wu
出处
期刊:Medical Imaging 2018: Physics of Medical Imaging 卷期号:: 11-11 被引量:16
标识
DOI:10.1117/12.2548985
摘要

With the development of deep learning (DL), many deep learning (DL) based algorithms have been widely used in the low-dose CT imaging and achieved promising reconstruction performance. However, most DL-based algorithms need to pre-collect a large set of image pairs (low-dose/high-dose image pairs) and trains networks in a supervised end-to-end manner. Actually, it is not feasible in clinical to obtain such a large amount of paired training data, especially for high-dose ones. Therefore, in this work, we present a semi-supervised learned sinogram restoration network (SLSR-Net) for low-dose CT image reconstruction. The presented SLSR-Net consists of supervised sub-network and unsupervised sub-network. Specifically, different from the traditional supervised DL networks which only use low-dose/high-dose sinogram pairs, the presented SLSR-Net method is capable of feeding only a few supervised sinogram pairs and massive unsupervised low-dose sinograms into the network training procedure. The supervised pairs are used to capture critical features (i.e., noise distribution, and tissue characteristics) latent in a supervised way and the unsupervised sub-network efficiently learns these features using a conventional weighted least-squares model with a regularization term. Moreover, another contribution of the presented SLSR-Net method is to adaptively transfer learned feature distribution from supervised subnetwork with the paired sinograms to unsupervised sub-network with unlabeled low-dose sinograms to obtain high-fidelity sinogram with a Kullback-Leibler divergence. Finally, the filtered backprojection algorithm is used to reconstruct CT images from the obtained sinograms. Real patient datasets are used to evaluate the performance of the presented SLSR-Net method and the corresponding experimental results show that compared with the traditional supervised learning method, the presented SLSR-Net method achieves competitive performance in terms of noise reduction and structure preservation in low-dose CT imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心天磊发布了新的文献求助10
刚刚
云溪发布了新的文献求助10
2秒前
勤恳的黑夜完成签到 ,获得积分10
2秒前
熵焓完成签到,获得积分10
2秒前
高兴凝安完成签到 ,获得积分10
3秒前
3秒前
康子硕发布了新的文献求助10
4秒前
孚游关注了科研通微信公众号
4秒前
5秒前
Mcdull发布了新的文献求助10
6秒前
6秒前
万能图书馆应助代代代代采纳,获得10
7秒前
共享精神应助Renhc采纳,获得10
8秒前
冯冯完成签到 ,获得积分10
8秒前
8秒前
CipherSage应助学术小白采纳,获得10
9秒前
共享精神应助研友_8op0RL采纳,获得10
10秒前
风格完成签到,获得积分10
10秒前
10秒前
SH发布了新的文献求助10
10秒前
SciGPT应助羞涩的鑫采纳,获得10
13秒前
桐桐应助xin采纳,获得10
13秒前
殷勤的帽子完成签到 ,获得积分10
13秒前
14秒前
斯文问旋完成签到,获得积分10
17秒前
欢呼的金毛完成签到,获得积分10
17秒前
18秒前
吐泡泡的奇异果完成签到,获得积分10
22秒前
vwvw驳回了英姑应助
23秒前
23秒前
24秒前
24秒前
26秒前
无花果应助。。采纳,获得10
28秒前
孚游发布了新的文献求助10
29秒前
阳光的友儿完成签到,获得积分10
29秒前
bkagyin应助Aourp采纳,获得10
30秒前
小小发布了新的文献求助10
30秒前
研友_VZG7GZ应助糕糕采纳,获得10
30秒前
Renhc发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5309857
求助须知:如何正确求助?哪些是违规求助? 4454301
关于积分的说明 13859732
捐赠科研通 4342290
什么是DOI,文献DOI怎么找? 2384425
邀请新用户注册赠送积分活动 1378884
关于科研通互助平台的介绍 1347126