Semi-supervised learned sinogram restoration network for low-dose CT image reconstruction

迭代重建 人工智能 计算机科学 模式识别(心理学) 深度学习 监督学习 特征(语言学) 无监督学习 人工神经网络 语言学 哲学
作者
Mingqiang Meng,Sui Li,Lisha Yao,Danyang Li,Manman Zhu,Qi Gao,Qi Xie,Qian Zhao,Zhaoying Bian,Jing Huang,Deyu Meng,Dong Zeng,Jianhua Ma,Pengwei Wu
出处
期刊:Medical Imaging 2018: Physics of Medical Imaging 卷期号:: 11-11 被引量:15
标识
DOI:10.1117/12.2548985
摘要

With the development of deep learning (DL), many deep learning (DL) based algorithms have been widely used in the low-dose CT imaging and achieved promising reconstruction performance. However, most DL-based algorithms need to pre-collect a large set of image pairs (low-dose/high-dose image pairs) and trains networks in a supervised end-to-end manner. Actually, it is not feasible in clinical to obtain such a large amount of paired training data, especially for high-dose ones. Therefore, in this work, we present a semi-supervised learned sinogram restoration network (SLSR-Net) for low-dose CT image reconstruction. The presented SLSR-Net consists of supervised sub-network and unsupervised sub-network. Specifically, different from the traditional supervised DL networks which only use low-dose/high-dose sinogram pairs, the presented SLSR-Net method is capable of feeding only a few supervised sinogram pairs and massive unsupervised low-dose sinograms into the network training procedure. The supervised pairs are used to capture critical features (i.e., noise distribution, and tissue characteristics) latent in a supervised way and the unsupervised sub-network efficiently learns these features using a conventional weighted least-squares model with a regularization term. Moreover, another contribution of the presented SLSR-Net method is to adaptively transfer learned feature distribution from supervised subnetwork with the paired sinograms to unsupervised sub-network with unlabeled low-dose sinograms to obtain high-fidelity sinogram with a Kullback-Leibler divergence. Finally, the filtered backprojection algorithm is used to reconstruct CT images from the obtained sinograms. Real patient datasets are used to evaluate the performance of the presented SLSR-Net method and the corresponding experimental results show that compared with the traditional supervised learning method, the presented SLSR-Net method achieves competitive performance in terms of noise reduction and structure preservation in low-dose CT imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wwc发布了新的文献求助10
1秒前
手机应助矢思然采纳,获得10
2秒前
zoeydonut发布了新的文献求助30
3秒前
4秒前
9秒前
Kitty发布了新的文献求助10
10秒前
11秒前
zoeydonut完成签到,获得积分20
11秒前
执念发布了新的文献求助10
13秒前
13秒前
科研通AI2S应助林夕君采纳,获得10
13秒前
张张发布了新的文献求助10
14秒前
研友_闾丘枫完成签到,获得积分10
18秒前
JJ完成签到,获得积分10
19秒前
22秒前
学阀小智发布了新的文献求助10
23秒前
BLYY完成签到,获得积分10
24秒前
wan发布了新的文献求助10
26秒前
猫南北发布了新的文献求助10
27秒前
27秒前
28秒前
林夕君完成签到,获得积分10
31秒前
32秒前
33秒前
哈哈完成签到,获得积分10
35秒前
陆陆发布了新的文献求助10
36秒前
36秒前
simiger发布了新的文献求助10
37秒前
小琥同学发布了新的文献求助10
37秒前
kk发布了新的文献求助10
41秒前
所所应助科研通管家采纳,获得10
41秒前
子车茗应助科研通管家采纳,获得20
42秒前
CodeCraft应助科研通管家采纳,获得30
42秒前
Flanker应助科研通管家采纳,获得10
42秒前
42秒前
充电宝应助科研通管家采纳,获得10
42秒前
子车茗应助科研通管家采纳,获得30
42秒前
共享精神应助科研通管家采纳,获得10
42秒前
Owen应助科研通管家采纳,获得10
42秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329591
求助须知:如何正确求助?哪些是违规求助? 2959170
关于积分的说明 8594608
捐赠科研通 2637675
什么是DOI,文献DOI怎么找? 1443672
科研通“疑难数据库(出版商)”最低求助积分说明 668807
邀请新用户注册赠送积分活动 656231