Semi-supervised learned sinogram restoration network for low-dose CT image reconstruction

迭代重建 人工智能 计算机科学 模式识别(心理学) 深度学习 监督学习 特征(语言学) 无监督学习 人工神经网络 语言学 哲学
作者
Mingqiang Meng,Sui Li,Lisha Yao,Danyang Li,Manman Zhu,Qi Gao,Qi Xie,Qian Zhao,Zhaoying Bian,Jing Huang,Deyu Meng,Dong Zeng,Jianhua Ma,Pengwei Wu
出处
期刊:Medical Imaging 2018: Physics of Medical Imaging 卷期号:: 11-11 被引量:16
标识
DOI:10.1117/12.2548985
摘要

With the development of deep learning (DL), many deep learning (DL) based algorithms have been widely used in the low-dose CT imaging and achieved promising reconstruction performance. However, most DL-based algorithms need to pre-collect a large set of image pairs (low-dose/high-dose image pairs) and trains networks in a supervised end-to-end manner. Actually, it is not feasible in clinical to obtain such a large amount of paired training data, especially for high-dose ones. Therefore, in this work, we present a semi-supervised learned sinogram restoration network (SLSR-Net) for low-dose CT image reconstruction. The presented SLSR-Net consists of supervised sub-network and unsupervised sub-network. Specifically, different from the traditional supervised DL networks which only use low-dose/high-dose sinogram pairs, the presented SLSR-Net method is capable of feeding only a few supervised sinogram pairs and massive unsupervised low-dose sinograms into the network training procedure. The supervised pairs are used to capture critical features (i.e., noise distribution, and tissue characteristics) latent in a supervised way and the unsupervised sub-network efficiently learns these features using a conventional weighted least-squares model with a regularization term. Moreover, another contribution of the presented SLSR-Net method is to adaptively transfer learned feature distribution from supervised subnetwork with the paired sinograms to unsupervised sub-network with unlabeled low-dose sinograms to obtain high-fidelity sinogram with a Kullback-Leibler divergence. Finally, the filtered backprojection algorithm is used to reconstruct CT images from the obtained sinograms. Real patient datasets are used to evaluate the performance of the presented SLSR-Net method and the corresponding experimental results show that compared with the traditional supervised learning method, the presented SLSR-Net method achieves competitive performance in terms of noise reduction and structure preservation in low-dose CT imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专一的傲白完成签到 ,获得积分10
1秒前
词汇过万完成签到,获得积分10
1秒前
zzx发布了新的文献求助10
1秒前
wing完成签到 ,获得积分10
1秒前
jery完成签到,获得积分10
2秒前
领导范儿应助孙博士采纳,获得10
2秒前
QJL完成签到,获得积分10
2秒前
星辰大海应助小慕斯采纳,获得10
3秒前
3秒前
3秒前
4秒前
斯文败类应助zzx采纳,获得10
4秒前
念姬完成签到 ,获得积分10
5秒前
5秒前
Jasper应助不加糖采纳,获得10
5秒前
终澈完成签到,获得积分10
6秒前
7秒前
suicone完成签到,获得积分10
7秒前
huifang完成签到,获得积分10
7秒前
王小橘完成签到,获得积分10
8秒前
Jasper应助付国瑞采纳,获得10
8秒前
小美美完成签到,获得积分10
9秒前
zzx完成签到,获得积分10
9秒前
健康的大门完成签到,获得积分10
9秒前
chase完成签到,获得积分10
10秒前
chen完成签到,获得积分10
10秒前
Eric_Zhang完成签到,获得积分10
10秒前
shanlu完成签到,获得积分10
10秒前
10秒前
Z160完成签到,获得积分10
11秒前
英俊的铭应助夹夹采纳,获得10
11秒前
充电宝应助拼搏半梦采纳,获得10
12秒前
12秒前
12秒前
12秒前
肥鱼不会飞完成签到,获得积分10
13秒前
潇潇完成签到,获得积分10
13秒前
LM完成签到,获得积分10
14秒前
Son4904发布了新的文献求助10
14秒前
xxxx完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960377
求助须知:如何正确求助?哪些是违规求助? 3506460
关于积分的说明 11130713
捐赠科研通 3238673
什么是DOI,文献DOI怎么找? 1789847
邀请新用户注册赠送积分活动 871964
科研通“疑难数据库(出版商)”最低求助积分说明 803099