Semi-supervised learned sinogram restoration network for low-dose CT image reconstruction

迭代重建 人工智能 计算机科学 模式识别(心理学) 深度学习 监督学习 特征(语言学) 无监督学习 人工神经网络 语言学 哲学
作者
Mingqiang Meng,Sui Li,Lisha Yao,Danyang Li,Manman Zhu,Qi Gao,Qi Xie,Qian Zhao,Zhaoying Bian,Jing Huang,Deyu Meng,Dong Zeng,Jianhua Ma,Pengwei Wu
出处
期刊:Medical Imaging 2018: Physics of Medical Imaging 卷期号:: 11-11 被引量:16
标识
DOI:10.1117/12.2548985
摘要

With the development of deep learning (DL), many deep learning (DL) based algorithms have been widely used in the low-dose CT imaging and achieved promising reconstruction performance. However, most DL-based algorithms need to pre-collect a large set of image pairs (low-dose/high-dose image pairs) and trains networks in a supervised end-to-end manner. Actually, it is not feasible in clinical to obtain such a large amount of paired training data, especially for high-dose ones. Therefore, in this work, we present a semi-supervised learned sinogram restoration network (SLSR-Net) for low-dose CT image reconstruction. The presented SLSR-Net consists of supervised sub-network and unsupervised sub-network. Specifically, different from the traditional supervised DL networks which only use low-dose/high-dose sinogram pairs, the presented SLSR-Net method is capable of feeding only a few supervised sinogram pairs and massive unsupervised low-dose sinograms into the network training procedure. The supervised pairs are used to capture critical features (i.e., noise distribution, and tissue characteristics) latent in a supervised way and the unsupervised sub-network efficiently learns these features using a conventional weighted least-squares model with a regularization term. Moreover, another contribution of the presented SLSR-Net method is to adaptively transfer learned feature distribution from supervised subnetwork with the paired sinograms to unsupervised sub-network with unlabeled low-dose sinograms to obtain high-fidelity sinogram with a Kullback-Leibler divergence. Finally, the filtered backprojection algorithm is used to reconstruct CT images from the obtained sinograms. Real patient datasets are used to evaluate the performance of the presented SLSR-Net method and the corresponding experimental results show that compared with the traditional supervised learning method, the presented SLSR-Net method achieves competitive performance in terms of noise reduction and structure preservation in low-dose CT imaging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助合适的如天采纳,获得10
刚刚
FYT关注了科研通微信公众号
刚刚
梦之完成签到 ,获得积分10
刚刚
水何澹澹完成签到,获得积分0
刚刚
lky发布了新的文献求助10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
adearfish发布了新的文献求助10
1秒前
谭续燊发布了新的文献求助10
1秒前
完美世界应助PEACE采纳,获得10
1秒前
ShyerC完成签到,获得积分10
2秒前
2秒前
柚子有点甜完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
杜胤江完成签到,获得积分10
4秒前
纤孜叶完成签到,获得积分10
4秒前
4秒前
无花果应助蒸盐粥采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
可以完成签到,获得积分10
6秒前
Hu关闭了Hu文献求助
7秒前
云宝发布了新的文献求助10
7秒前
停云发布了新的文献求助10
8秒前
8秒前
NML发布了新的文献求助10
8秒前
叁拾肆完成签到,获得积分10
9秒前
狄鹤轩发布了新的文献求助10
9秒前
9秒前
wkjfh应助畅快的以寒采纳,获得10
9秒前
10秒前
天天快乐应助纳川采纳,获得10
11秒前
YIN完成签到 ,获得积分10
11秒前
火星上夏云完成签到,获得积分10
12秒前
12秒前
花火发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095