Digital innovation in subsea integrity management

工程类
作者
Ricky Thethi,Dharmik Vadel,Mark Haning,Elizabeth Tellier
出处
期刊:The APPEA Journal 卷期号:60 (1): 215-226 被引量:1
标识
DOI:10.1071/aj19123
摘要

Since the 2014 oil-price downturn, the offshore oil and gas industry has accelerated implementation of digital technologies to drive cost efficiencies for exploration and production operations. The upstream offshore sector comprises many interfacing disciplines such as subsurface, drilling and completions, facilities and production operations. Digital initiatives in subsurface imaging, drilling of subsea wells and topsides integrity have been well publicised within the industry. Integrity of the subsea infrastructure is one area that is currently playing catch up in the digital space and lends itself well for data computational efficiencies that artificial-intelligence technologies provide, to reduce cost and lower the risk of subsea equipment downtime. This paper details digital technologies employed in the area of subsea integrity management to meet the objectives of centralising access to critical integrity data, automating workflows to collect and assess data, and using machine learning to perform more accurate and faster engineering analysis with large volumes of field-measured data. A comparison of a typical subsea field is presented using non-digital and digital approaches to subsea integrity management (IM). The comparison demonstrates where technologies such as digital twins for dynamic structures, and auto anomaly detection by using image recognition algorithms can be deployed to provide a step change in the quality of subsea integrity data coming from field. It is demonstrated how the use of a smart IM approach, combined with strong domain knowledge in subsea engineering, can lead to cost efficiencies in operating subsea assets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
4秒前
OpangziO发布了新的文献求助10
4秒前
ding完成签到,获得积分10
4秒前
彭于晏应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
852应助科研通管家采纳,获得10
6秒前
6秒前
欢檬发布了新的文献求助10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
linxc07完成签到,获得积分10
7秒前
一步之遥发布了新的文献求助10
7秒前
cc2713206完成签到,获得积分0
9秒前
xujiale完成签到,获得积分10
9秒前
追寻冰淇淋应助tdtk采纳,获得10
9秒前
赵雪萌发布了新的文献求助10
10秒前
OpangziO完成签到,获得积分10
13秒前
13秒前
15秒前
CAOHOU应助DJ_Tokyo采纳,获得10
15秒前
苏茜完成签到,获得积分10
16秒前
Lucas应助赵雪萌采纳,获得10
16秒前
16秒前
weilanhaian发布了新的文献求助10
17秒前
丰富的胡萝卜完成签到,获得积分10
18秒前
18秒前
在水一方应助吴小苏采纳,获得10
18秒前
18秒前
小孩静悄悄完成签到,获得积分10
19秒前
20秒前
木悠完成签到,获得积分10
20秒前
苏茜发布了新的文献求助10
21秒前
一步之遥完成签到,获得积分10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959455
求助须知:如何正确求助?哪些是违规求助? 3505634
关于积分的说明 11125092
捐赠科研通 3237449
什么是DOI,文献DOI怎么找? 1789148
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802858