电解质
材料科学
锂(药物)
离子
电极
电导率
大气温度范围
航程(航空)
光电子学
化学工程
纳米技术
阴极
电气工程
复合材料
热力学
化学
医学
物理
工程类
内分泌学
物理化学
有机化学
作者
Xianhui Zhang,Lianfeng Zou,Yaobin Xu,Xia Cao,Mark Engelhard,Bethany E. Matthews,Lirong Zhong,Haiping Wu,Hao Jia,Xiaodi Ren,Peiyuan Gao,Zonghai Chen,Yan Qin,Christopher Kompella,Bruce W. Arey,Jun Li,Deyu Wang,Chongmin Wang,Ji‐Guang Zhang,Wu Xu
标识
DOI:10.1002/aenm.202000368
摘要
Abstract LiNi x Mn y Co 1− x − y O 2 (NMC) cathode materials with Ni ≥ 0.8 have attracted great interest for high energy‐density lithium‐ion batteries (LIBs) but their practical applications under high charge voltages (e.g., 4.4 V and above) still face significant challenges due to severe capacity fading by the unstable cathode/electrolyte interface. Here, an advanced electrolyte is developed that has a high oxidation potential over 4.9 V and enables NMC811‐based LIBs to achieve excellent cycling stability in 2.5–4.4 V at room temperature and 60 °C, good rate capabilities under fast charging and discharging up to 3C rate (1C = 2.8 mA cm −2 ), and superior low‐temperature discharge performance down to −30 °C with a capacity retention of 85.6% at C/5 rate. It is also demonstrated that the electrode/electrolyte interfaces, not the electrolyte conductivity and viscosity, govern the LIB performance. This work sheds light on a very promising strategy to develop new electrolytes for fast‐charging high‐energy LIBs in a wide‐temperature range.
科研通智能强力驱动
Strongly Powered by AbleSci AI