Towards large-scale case-finding: training and validation of residual networks for detection of chronic obstructive pulmonary disease using low-dose CT

慢性阻塞性肺病 医学 接收机工作特性 肺癌 队列 阻塞性肺病 金标准(测试) 肺癌筛查 放射科 机器学习 内科学 计算机科学
作者
Lisa Tang,Harvey O. Coxson,Stephen Lam,Jonathon Leipsic,Roger Tam,Don D. Sin
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:2 (5): e259-e267 被引量:50
标识
DOI:10.1016/s2589-7500(20)30064-9
摘要

BackgroundChronic obstructive pulmonary disease (COPD) is underdiagnosed in the community. Thoracic CT scans are widely used for diagnostic and screening purposes for lung cancer. In this proof-of-concept study, we aimed to evaluate a software pipeline for the automated detection of COPD, based on deep learning and a dataset of low-dose CTs that were performed for early detection of lung cancer.MethodsWe examined the use of deep residual networks, a type of artificial residual network, for the automated detection of COPD. Three versions of the residual networks were independently trained to perform COPD diagnosis using random subsets of CT scans collected from the PanCan study, which enrolled ex-smokers and current smokers at high risk of lung cancer, and evaluated the networks using three-fold cross-validation experiments. External validation was performed using 2153 CT scans acquired from a separate cohort of individuals with COPD in the ECLIPSE study. Spirometric data were used to define COPD, with stages defined according to the GOLD criteria.FindingsThe best performing networks achieved an area under the receiver operating characteristic curve (AUC) of 0·889 (SD 0·017) in three-fold cross-validation experiments. When the same set of networks was applied to the ECLIPSE cohort without any modifications to the trained models, they achieved an AUC of 0·886 (0·017), a positive predictive value of 0·847 (0·056), and a negative predictive value of 0·755 (0·097), which is a greater performance than the best quantitative CT measure, the percentage of lung volumes of less than or equal to −950 Hounsfield units (AUC 0·742).InterpretationOur proposed approach could identify patients with COPD among ex-smokers and current smokers without a previous diagnosis of COPD, with clinically acceptable performance. The use of deep residual networks on chest CT scans could be an effective case-finding tool for COPD detection and diagnosis, particularly in ex-smokers and current smokers who are being screened for lung cancer.FundingData Science Institute, University of British Columbia; Canadian Institutes of Health Research
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
细腻涵菱完成签到,获得积分10
1秒前
吕耀炜完成签到,获得积分10
1秒前
1秒前
1秒前
简称王完成签到 ,获得积分10
1秒前
蓝莓松饼完成签到,获得积分10
2秒前
一路高飛完成签到,获得积分10
2秒前
赘婿应助andyxrz采纳,获得10
2秒前
Zhang完成签到,获得积分10
2秒前
3秒前
年轻冥茗完成签到,获得积分10
3秒前
apple发布了新的文献求助10
4秒前
CarterXD完成签到,获得积分10
4秒前
紧张的友灵完成签到,获得积分10
4秒前
SciGPT应助之仔饼采纳,获得10
5秒前
liudiqiu应助追寻的易烟采纳,获得10
5秒前
Chem is try发布了新的文献求助10
5秒前
5秒前
vsoar完成签到,获得积分10
5秒前
6秒前
7秒前
GGGGGGGGGG发布了新的文献求助10
7秒前
7秒前
打打应助hhh采纳,获得10
8秒前
抓恐龙关注了科研通微信公众号
8秒前
碳点godfather完成签到,获得积分10
8秒前
ren完成签到,获得积分20
8秒前
我想把这玩意儿染成绿的完成签到 ,获得积分10
9秒前
TG_FY完成签到,获得积分10
9秒前
9秒前
hhh完成签到,获得积分10
9秒前
JamesPei应助诗轩采纳,获得10
10秒前
TT完成签到,获得积分10
11秒前
reck发布了新的文献求助10
11秒前
12秒前
DK发布了新的文献求助10
12秒前
英俊的铭应助ren采纳,获得10
12秒前
圈圈发布了新的文献求助10
12秒前
乐乱完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672