Towards large-scale case-finding: training and validation of residual networks for detection of chronic obstructive pulmonary disease using low-dose CT

慢性阻塞性肺病 医学 接收机工作特性 肺癌 队列 阻塞性肺病 金标准(测试) 肺癌筛查 放射科 机器学习 内科学 计算机科学
作者
Lisa Tang,Harvey O. Coxson,Stephen Lam,Jonathon Leipsic,Roger Tam,Don D. Sin
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:2 (5): e259-e267 被引量:50
标识
DOI:10.1016/s2589-7500(20)30064-9
摘要

BackgroundChronic obstructive pulmonary disease (COPD) is underdiagnosed in the community. Thoracic CT scans are widely used for diagnostic and screening purposes for lung cancer. In this proof-of-concept study, we aimed to evaluate a software pipeline for the automated detection of COPD, based on deep learning and a dataset of low-dose CTs that were performed for early detection of lung cancer.MethodsWe examined the use of deep residual networks, a type of artificial residual network, for the automated detection of COPD. Three versions of the residual networks were independently trained to perform COPD diagnosis using random subsets of CT scans collected from the PanCan study, which enrolled ex-smokers and current smokers at high risk of lung cancer, and evaluated the networks using three-fold cross-validation experiments. External validation was performed using 2153 CT scans acquired from a separate cohort of individuals with COPD in the ECLIPSE study. Spirometric data were used to define COPD, with stages defined according to the GOLD criteria.FindingsThe best performing networks achieved an area under the receiver operating characteristic curve (AUC) of 0·889 (SD 0·017) in three-fold cross-validation experiments. When the same set of networks was applied to the ECLIPSE cohort without any modifications to the trained models, they achieved an AUC of 0·886 (0·017), a positive predictive value of 0·847 (0·056), and a negative predictive value of 0·755 (0·097), which is a greater performance than the best quantitative CT measure, the percentage of lung volumes of less than or equal to −950 Hounsfield units (AUC 0·742).InterpretationOur proposed approach could identify patients with COPD among ex-smokers and current smokers without a previous diagnosis of COPD, with clinically acceptable performance. The use of deep residual networks on chest CT scans could be an effective case-finding tool for COPD detection and diagnosis, particularly in ex-smokers and current smokers who are being screened for lung cancer.FundingData Science Institute, University of British Columbia; Canadian Institutes of Health Research
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
suiwuya完成签到,获得积分10
1秒前
gg完成签到,获得积分10
2秒前
蜜蜂威士忌完成签到 ,获得积分10
3秒前
风趣的小甜瓜完成签到,获得积分10
7秒前
ywsss完成签到,获得积分10
8秒前
10秒前
sos完成签到,获得积分10
10秒前
cccyyb应助Wang采纳,获得10
10秒前
unowhoiam完成签到 ,获得积分10
12秒前
win完成签到 ,获得积分10
14秒前
峰回路转完成签到,获得积分10
14秒前
Sherwin完成签到,获得积分10
15秒前
Jim luo发布了新的文献求助10
16秒前
王金娥发布了新的文献求助10
16秒前
浅香千雪发布了新的文献求助10
16秒前
开放白易完成签到 ,获得积分10
17秒前
寻道图强应助简单的丑采纳,获得30
19秒前
人参跳芭蕾完成签到 ,获得积分10
19秒前
GuangboXia完成签到,获得积分10
20秒前
于洋完成签到 ,获得积分10
20秒前
意签完成签到,获得积分10
21秒前
柏锦程完成签到 ,获得积分10
21秒前
atmcymed完成签到,获得积分10
22秒前
22秒前
manye完成签到,获得积分10
22秒前
SciGPT应助Jim luo采纳,获得10
23秒前
迷人的灵萱完成签到 ,获得积分10
24秒前
西扬完成签到 ,获得积分10
24秒前
清璃完成签到 ,获得积分10
27秒前
cxlhzq完成签到,获得积分10
28秒前
小高同学完成签到,获得积分10
28秒前
大海是故乡完成签到,获得积分10
28秒前
隐形曼青应助流星雨采纳,获得10
30秒前
CR完成签到 ,获得积分10
31秒前
yiluyouni完成签到,获得积分10
33秒前
33秒前
机械腾完成签到,获得积分10
34秒前
35秒前
学术噗噗完成签到,获得积分10
36秒前
Jim luo发布了新的文献求助10
38秒前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068355
求助须知:如何正确求助?哪些是违规求助? 2722240
关于积分的说明 7476332
捐赠科研通 2369299
什么是DOI,文献DOI怎么找? 1256310
科研通“疑难数据库(出版商)”最低求助积分说明 609538
版权声明 596835