亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards large-scale case-finding: training and validation of residual networks for detection of chronic obstructive pulmonary disease using low-dose CT

慢性阻塞性肺病 医学 接收机工作特性 肺癌 队列 阻塞性肺病 金标准(测试) 肺癌筛查 放射科 机器学习 内科学 计算机科学
作者
Lisa Tang,Harvey O. Coxson,Stephen Lam,Jonathon Leipsic,Roger Tam,Don D. Sin
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:2 (5): e259-e267 被引量:50
标识
DOI:10.1016/s2589-7500(20)30064-9
摘要

BackgroundChronic obstructive pulmonary disease (COPD) is underdiagnosed in the community. Thoracic CT scans are widely used for diagnostic and screening purposes for lung cancer. In this proof-of-concept study, we aimed to evaluate a software pipeline for the automated detection of COPD, based on deep learning and a dataset of low-dose CTs that were performed for early detection of lung cancer.MethodsWe examined the use of deep residual networks, a type of artificial residual network, for the automated detection of COPD. Three versions of the residual networks were independently trained to perform COPD diagnosis using random subsets of CT scans collected from the PanCan study, which enrolled ex-smokers and current smokers at high risk of lung cancer, and evaluated the networks using three-fold cross-validation experiments. External validation was performed using 2153 CT scans acquired from a separate cohort of individuals with COPD in the ECLIPSE study. Spirometric data were used to define COPD, with stages defined according to the GOLD criteria.FindingsThe best performing networks achieved an area under the receiver operating characteristic curve (AUC) of 0·889 (SD 0·017) in three-fold cross-validation experiments. When the same set of networks was applied to the ECLIPSE cohort without any modifications to the trained models, they achieved an AUC of 0·886 (0·017), a positive predictive value of 0·847 (0·056), and a negative predictive value of 0·755 (0·097), which is a greater performance than the best quantitative CT measure, the percentage of lung volumes of less than or equal to −950 Hounsfield units (AUC 0·742).InterpretationOur proposed approach could identify patients with COPD among ex-smokers and current smokers without a previous diagnosis of COPD, with clinically acceptable performance. The use of deep residual networks on chest CT scans could be an effective case-finding tool for COPD detection and diagnosis, particularly in ex-smokers and current smokers who are being screened for lung cancer.FundingData Science Institute, University of British Columbia; Canadian Institutes of Health Research
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
Eatanicecube完成签到,获得积分10
19秒前
juan完成签到 ,获得积分10
45秒前
Raunio完成签到,获得积分10
1分钟前
lhy12345完成签到,获得积分10
1分钟前
咳咳哼完成签到,获得积分10
1分钟前
东海帝王发布了新的文献求助10
2分钟前
星辰大海应助东海帝王采纳,获得10
2分钟前
乐乐应助科研通管家采纳,获得10
3分钟前
hhhhhardboy完成签到,获得积分20
3分钟前
hhhhhardboy发布了新的文献求助20
3分钟前
随机子应助一杯茶采纳,获得10
3分钟前
4分钟前
充电宝应助hhhhhardboy采纳,获得10
5分钟前
Jenny完成签到,获得积分10
5分钟前
一杯茶发布了新的文献求助10
5分钟前
5分钟前
大模型应助糊涂的清醒者采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
一杯茶发布了新的文献求助10
7分钟前
科研通AI2S应助悦耳十三采纳,获得10
7分钟前
7分钟前
8分钟前
8分钟前
魔幻的从阳完成签到,获得积分10
8分钟前
李健应助一杯茶采纳,获得10
8分钟前
8分钟前
9分钟前
9分钟前
zxt12305313完成签到 ,获得积分10
9分钟前
9分钟前
10分钟前
一杯茶发布了新的文献求助10
10分钟前
CipherSage应助科研通管家采纳,获得10
11分钟前
852应助摘星数羊采纳,获得10
11分钟前
ww完成签到,获得积分10
11分钟前
11分钟前
摘星数羊发布了新的文献求助10
11分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167188
求助须知:如何正确求助?哪些是违规求助? 2818687
关于积分的说明 7921881
捐赠科研通 2478444
什么是DOI,文献DOI怎么找? 1320323
科研通“疑难数据库(出版商)”最低求助积分说明 632748
版权声明 602438