数学
超定系统
收敛速度
块(置换群论)
最小二乘函数近似
数学优化
趋同(经济学)
贪婪算法
残余物
线性系统
应用数学
算法
组合数学
统计
计算机科学
数学分析
计算机网络
经济增长
频道(广播)
经济
估计员
作者
Yong Liu,Chuan-Qing Gu
标识
DOI:10.1016/j.laa.2021.01.024
摘要
The randomized block Kaczmarz method aims to solve linear system Ax=b by iteratively projecting the current estimate to the solution space of a subset of the constraints. Recent works analyzed the method for the overdetermined least-squares problem, showing expected linear rate of convergence to the ordinary least squares solution with the use of a randomized control scheme to choose the subset at each step. This paper considers the natural follow-up to the randomized control scheme—greedy strategies like the greedy probability criterion and the almost-maximal residual control, and show convergence to a least-squares least-norm solution. Numerical results show that our proposed methods are feasible and have faster convergence rate than the randomized block Kaczmarz method.
科研通智能强力驱动
Strongly Powered by AbleSci AI