DENS-ECG: A deep learning approach for ECG signal delineation

计算机科学 心跳 人工智能 深度学习 卷积神经网络 分割 稳健性(进化) QRS波群 偏移量(计算机科学) 模式识别(心理学) 人工神经网络 灵敏度(控制系统) 波形 机器学习 特征工程 电信 生物化学 化学 雷达 计算机安全 电子工程 工程类 心脏病学 基因 程序设计语言 医学
作者
Abdolrahman Peimankar,Sadasivan Puthusserypady
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:165: 113911-113911 被引量:121
标识
DOI:10.1016/j.eswa.2020.113911
摘要

With the technological advancements in the field of tele-health monitoring, it is now possible to gather huge amount of electro-physiological signals such as the electrocardiogram (ECG). It is therefore necessary to develop models/algorithms that are capable of analysing these massive amount of data in real-time. This paper proposes a deep learning model for real-time segmentation of heartbeats. The proposed DENS-ECG algorithm, combines convolutional neural network (CNN) and long short-term memory (LSTM) model to detect onset, peak, and offset of different heartbeat waveforms such as the P-waves, QRS complexes, T-waves, and No waves (NW). Using ECG as the inputs, the model learns to extract high level features through the training process, which, unlike other classical machine learning based methods, eliminates the feature engineering step. The proposed DENS-ECG model was trained and validated on a dataset with 105 ECG records of length 15 min each and achieved an average sensitivity and precision of 97.95% and 95.68%, respectively, using a stratified 5-fold cross validation. Additionally, the model was evaluated on an unseen dataset to examine its robustness in QRS detection, which resulted in a sensitivity of 99.61% and precision of 99.52%. The empirical results show the flexibility and accuracy of the combined CNN-LSTM model for ECG signal delineation. This paper proposes an efficient and easy to use approach using deep learning for heartbeat segmentation, which could potentially be used in real-time tele-health monitoring systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
块块的加隆满口袋完成签到 ,获得积分10
刚刚
动人的鬼神完成签到 ,获得积分10
1秒前
满意的伊发布了新的文献求助10
1秒前
1秒前
3秒前
陈皮完成签到,获得积分10
4秒前
乐乐完成签到,获得积分10
5秒前
5秒前
小补给卡发布了新的文献求助10
5秒前
5秒前
5秒前
科研通AI6应助keeptg采纳,获得10
7秒前
欣喜的诗筠完成签到 ,获得积分10
7秒前
8秒前
hcy发布了新的文献求助10
9秒前
小黄快跑完成签到 ,获得积分10
10秒前
领导范儿应助echo采纳,获得10
11秒前
所所应助愉快的翅膀采纳,获得10
11秒前
深情安青应助洁净大树采纳,获得10
11秒前
12秒前
qq完成签到,获得积分10
12秒前
虚心文轩发布了新的文献求助10
13秒前
小黄快跑关注了科研通微信公众号
13秒前
量子星尘发布了新的文献求助10
13秒前
orixero应助UMA采纳,获得10
14秒前
酷波er应助UMA采纳,获得10
14秒前
bkagyin应助UMA采纳,获得10
14秒前
烟花应助UMA采纳,获得10
14秒前
万能图书馆应助UMA采纳,获得10
14秒前
顾矜应助UMA采纳,获得10
14秒前
小二郎应助UMA采纳,获得10
14秒前
我是老大应助UMA采纳,获得10
14秒前
田様应助UMA采纳,获得10
14秒前
Tonson应助美雪曹采纳,获得10
15秒前
15秒前
浅笑_随风发布了新的文献求助10
16秒前
17秒前
香蕉觅云应助赵浩楠采纳,获得10
18秒前
乐乐应助清脆的易绿采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469432
求助须知:如何正确求助?哪些是违规求助? 4572532
关于积分的说明 14336014
捐赠科研通 4499397
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453564
关于科研通互助平台的介绍 1428091