Droplet mobilization at the walls of a microfluidic channel

毛细管数 毛细管作用 机械 润湿 微通道 物理 接触角 涡流 工作(物理) 微流控 测速 体积流量 流量(数学) 粘度 热力学
作者
Guang Yang,Xu Chu,Visakh Vaikuntanathan,Shanshan Wang,Jingyi Wu,Bernhard Weigand,Alexandros Terzis
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:32 (1) 被引量:35
标识
DOI:10.1063/1.5139308
摘要

The mechanism of dynamic wetting and the fluid dynamics during the onset of droplet mobilization driven by a microchannel flow are not clearly understood. In this work, we use microparticle tracking velocimetry to visualize the velocity distribution inside the droplet both prior to and during mobilization. Time-averaged and instantaneous velocity vectors are determined using fluorescent microscopy for various capillary numbers. A circulating flow exists inside the droplet at a subcritical capillary number, in which case the droplet is pinned to the channel walls. When the capillary number exceeds a critical value, droplet mobilization occurs, and this process can be divided into two stages. In the first stage, the location of the internal circulation vortex center moves to the rear of the droplet and the droplet deforms, but the contact lines at the top walls remain fixed. In the second stage, the droplet rolls along the solid wall, with fixed contact angles keeping the vortex center in the rear part of the droplet. The critical capillary number for the droplet mobilization is larger for the droplet fluid with a larger viscosity. A force-balance model of the droplet, considering the effect of fluid properties, is formulated to explain the experimental trends of advancing and receding contact angles with the capillary number. Numerical simulations on internal circulations for the pinned droplet indicate that the reversed flow rate, when normalized by the inlet flow rate and the kinematic viscosity ratio of the wetting and nonwetting phases, is independent of the capillary number and the droplet composition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lqq的一家之主完成签到,获得积分10
刚刚
陈陈完成签到 ,获得积分10
刚刚
么系么系完成签到,获得积分10
刚刚
1秒前
坤坤完成签到,获得积分10
1秒前
东风第一枝完成签到,获得积分20
1秒前
欢欢发布了新的文献求助10
1秒前
Jasper应助易安采纳,获得10
3秒前
3秒前
一一发布了新的文献求助10
3秒前
4秒前
Muller完成签到,获得积分10
4秒前
经法发布了新的文献求助10
5秒前
谦让的忘幽完成签到,获得积分20
5秒前
和谐小南完成签到,获得积分10
5秒前
小jiojio的猪完成签到,获得积分10
5秒前
小匹夫完成签到,获得积分10
6秒前
赤墨完成签到,获得积分10
6秒前
6秒前
7秒前
狮子沟核聚变骡子完成签到 ,获得积分10
7秒前
7秒前
传奇3应助乔治韦斯莱采纳,获得30
7秒前
7秒前
8秒前
于某人完成签到,获得积分10
8秒前
小陈要发SCI完成签到 ,获得积分10
8秒前
cdercder应助尹天扬采纳,获得20
8秒前
称心铭完成签到 ,获得积分10
9秒前
cjh258819完成签到,获得积分10
10秒前
10秒前
xl完成签到 ,获得积分10
11秒前
11秒前
11秒前
liu完成签到 ,获得积分10
11秒前
11秒前
wdlc完成签到,获得积分10
11秒前
11秒前
11秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678