Comparing the efficiency of defect depth characterization algorithms in the inspection of CFRP by using one-sided pulsed thermal NDT

无损检测 热成像 材料科学 噪音(视频) 表征(材料科学) 信号(编程语言) 算法 热的 计算机科学 相(物质) 声学 信号处理 光学 人工智能 红外线的 图像(数学) 数字信号处理 物理 量子力学 气象学 纳米技术 程序设计语言 计算机硬件
作者
Alexey Moskovchenko,V. P. Vavilov,A. O. Chulkov
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:107: 103289-103289 被引量:25
标识
DOI:10.1016/j.infrared.2020.103289
摘要

The efficiency of eight algorithms of defect depth characterization (pulse phase thermography – PPT, thermographic signal reconstruction by analyzing the first and second derivatives– TSR, early observation – EO, apparent thermal inertia – ATI, thermal quadrupoles - TQ, non-linear fitting - NLF and neural networks – NN) has been comparatively analyzed on both theoretical and experimental IR image sequences obtained in the inspection of CFRP composite. Synthetic noise-free image sequences have been calculated by means of the ThermoCalc-3D software, while experimental results have been obtained by applying a one-sided procedure of pulsed thermal NDT to the inspection of artificial defects in CFRP. A relative error in the evaluation of defect depth has been chosen as a figure of merit. It has been demonstrated that a simple and robust processing technique is the use of the Fourier transform resulting in phase-domain data (PPT). The technique of TSR ensures maximal values of signal-to-noise ratio and is less susceptible to uneven heating and lateral heat diffusion. The calculation of ATI has allowed the characterization of defects at depths up to 1.5 mm, but it is sensitive to uneven heating thus requiring to carefully choose a non-defect area. The EO method, as well as the technique of TQ, have revealed inferior results in defect depth identification because of a noisy character of raw signals. Non-linear fitting is a convenient processing technique allowing simultaneous characterization of some test parameters, such as material thermal properties, defect depth and thickness, etc., but this technique is time-consuming and can hardly be applied to full-format images. In the whole defect depth range, minimal characterization errors have been ensured by the use of the NN that is a promising tool for automated identification of hidden defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
阳光书芹完成签到,获得积分10
刚刚
刚刚
黄紫红完成签到 ,获得积分10
1秒前
1秒前
2秒前
在水一方应助朴实海亦采纳,获得10
2秒前
xubajia完成签到 ,获得积分10
2秒前
卷儿w发布了新的文献求助10
2秒前
lym2021完成签到,获得积分10
3秒前
3秒前
aaa完成签到,获得积分10
3秒前
花誓lydia发布了新的文献求助10
3秒前
Ds应助达达不爱学术采纳,获得10
4秒前
berry完成签到,获得积分10
4秒前
芝士发布了新的文献求助10
4秒前
4秒前
cchi完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
糖炒栗子完成签到,获得积分10
6秒前
欸巧克力豆完成签到,获得积分10
6秒前
liz完成签到,获得积分10
6秒前
alone发布了新的文献求助10
6秒前
6秒前
摸鱼校尉完成签到,获得积分0
6秒前
cw完成签到,获得积分10
6秒前
WZH完成签到,获得积分10
7秒前
7秒前
感动初蓝完成签到 ,获得积分10
7秒前
莫非完成签到,获得积分10
7秒前
无辜铅笔发布了新的文献求助10
8秒前
cdercder完成签到,获得积分0
8秒前
DD完成签到,获得积分10
9秒前
机智的璐璐完成签到,获得积分10
9秒前
余伟豪完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665002
求助须知:如何正确求助?哪些是违规求助? 4874181
关于积分的说明 15110894
捐赠科研通 4824136
什么是DOI,文献DOI怎么找? 2582650
邀请新用户注册赠送积分活动 1536595
关于科研通互助平台的介绍 1495195