Comparing the efficiency of defect depth characterization algorithms in the inspection of CFRP by using one-sided pulsed thermal NDT

无损检测 热成像 材料科学 噪音(视频) 表征(材料科学) 信号(编程语言) 算法 热的 计算机科学 相(物质) 声学 信号处理 光学 人工智能 红外线的 图像(数学) 数字信号处理 物理 量子力学 气象学 纳米技术 程序设计语言 计算机硬件
作者
Alexey Moskovchenko,V. P. Vavilov,A. O. Chulkov
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:107: 103289-103289 被引量:25
标识
DOI:10.1016/j.infrared.2020.103289
摘要

The efficiency of eight algorithms of defect depth characterization (pulse phase thermography – PPT, thermographic signal reconstruction by analyzing the first and second derivatives– TSR, early observation – EO, apparent thermal inertia – ATI, thermal quadrupoles - TQ, non-linear fitting - NLF and neural networks – NN) has been comparatively analyzed on both theoretical and experimental IR image sequences obtained in the inspection of CFRP composite. Synthetic noise-free image sequences have been calculated by means of the ThermoCalc-3D software, while experimental results have been obtained by applying a one-sided procedure of pulsed thermal NDT to the inspection of artificial defects in CFRP. A relative error in the evaluation of defect depth has been chosen as a figure of merit. It has been demonstrated that a simple and robust processing technique is the use of the Fourier transform resulting in phase-domain data (PPT). The technique of TSR ensures maximal values of signal-to-noise ratio and is less susceptible to uneven heating and lateral heat diffusion. The calculation of ATI has allowed the characterization of defects at depths up to 1.5 mm, but it is sensitive to uneven heating thus requiring to carefully choose a non-defect area. The EO method, as well as the technique of TQ, have revealed inferior results in defect depth identification because of a noisy character of raw signals. Non-linear fitting is a convenient processing technique allowing simultaneous characterization of some test parameters, such as material thermal properties, defect depth and thickness, etc., but this technique is time-consuming and can hardly be applied to full-format images. In the whole defect depth range, minimal characterization errors have been ensured by the use of the NN that is a promising tool for automated identification of hidden defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
庄生完成签到,获得积分20
1秒前
xianyu完成签到,获得积分10
1秒前
1秒前
笑傲江湖完成签到,获得积分10
2秒前
脑洞疼应助qcj采纳,获得10
2秒前
2秒前
765254958发布了新的文献求助10
3秒前
xianyu发布了新的文献求助10
3秒前
呐殇完成签到,获得积分10
3秒前
关尔匕禾页完成签到,获得积分10
4秒前
庄生发布了新的文献求助10
5秒前
5秒前
carolsoongmm完成签到,获得积分10
5秒前
充电宝应助葡萄树采纳,获得10
5秒前
研友_nPxRRn发布了新的文献求助10
5秒前
崩溃发布了新的文献求助10
6秒前
呐殇发布了新的文献求助30
6秒前
6秒前
7秒前
7秒前
小柴发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
搜集达人应助wangfeng007采纳,获得30
7秒前
专注白昼应助王浩星采纳,获得10
8秒前
JamesPei应助轻松的蘑菇采纳,获得10
8秒前
俭朴爆米花完成签到,获得积分20
8秒前
旋转胡萝卜完成签到,获得积分10
10秒前
10秒前
酷波er应助研友_nPxRRn采纳,获得30
11秒前
11秒前
蓝天应助风清扬采纳,获得10
11秒前
Amuro发布了新的文献求助10
11秒前
侃侃发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
13秒前
old赵应助无心的行云采纳,获得10
13秒前
艾雪发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106