Hardware/Software Co-Exploration of Neural Architectures

计算机科学 软件 集合(抽象数据类型) 超参数 设计空间探索 人工神经网络 计算机工程 人工智能 建筑 强化学习 太空探索 机器学习 计算机体系结构 计算机硬件 嵌入式系统 程序设计语言 工程类 视觉艺术 航空航天工程 艺术
作者
Weiwen Jiang,Lei Yang,Edwin H.‐M. Sha,Qingfeng Zhuge,Shouzhen Gu,Sakyasingha Dasgupta,Yiyu Shi,Jingtong Hu
出处
期刊:IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:39 (12): 4805-4815 被引量:122
标识
DOI:10.1109/tcad.2020.2986127
摘要

We propose a novel hardware and software co-exploration framework for efficient neural architecture search (NAS). Different from existing hardware-aware NAS which assumes a fixed hardware design and explores the NAS space only, our framework simultaneously explores both the architecture search space and the hardware design space to identify the best neural architecture and hardware pairs that maximize both test accuracy and hardware efficiency. Such a practice greatly opens up the design freedom and pushes forward the Pareto frontier between hardware efficiency and test accuracy for better design tradeoffs. The framework iteratively performs a two-level (fast and slow) exploration. Without lengthy training, the fast exploration can effectively fine-tune hyperparameters and prune inferior architectures in terms of hardware specifications, which significantly accelerates the NAS process. Then, the slow exploration trains candidates on a validation set and updates a controller using the reinforcement learning to maximize the expected accuracy together with the hardware efficiency. In this article, we demonstrate that the co-exploration framework can effectively expand the search space to incorporate models with high accuracy, and we theoretically show that the proposed two-level optimization can efficiently prune inferior solutions to better explore the search space. The experimental results on ImageNet show that the co-exploration NAS can find solutions with the same accuracy, 35.24% higher throughput, 54.05% higher energy efficiency, compared with the hardware-aware NAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辰月贰拾完成签到,获得积分10
1秒前
2秒前
嘻嘻完成签到,获得积分20
3秒前
糖糖完成签到 ,获得积分10
6秒前
6秒前
8秒前
8秒前
皮蛋solo粥发布了新的文献求助10
8秒前
thangxtz完成签到,获得积分10
9秒前
Tao完成签到,获得积分10
11秒前
VDC举报allen7u求助涉嫌违规
11秒前
领导范儿应助joy0523采纳,获得10
12秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
华仔应助小心科研采纳,获得10
16秒前
卢莹完成签到,获得积分10
18秒前
GXP发布了新的文献求助10
19秒前
lidada123完成签到,获得积分10
19秒前
领导范儿应助优秀的碧凡采纳,获得10
19秒前
19秒前
HtheJ完成签到,获得积分10
19秒前
盗糖小鸭完成签到,获得积分10
22秒前
Hello应助hmv采纳,获得30
23秒前
俊逸翠柏完成签到,获得积分10
23秒前
善学以致用应助许红采纳,获得10
23秒前
嘻嘻发布了新的文献求助10
23秒前
24秒前
25秒前
VDC举报公主求助涉嫌违规
25秒前
25秒前
科研通AI6应助save采纳,获得10
26秒前
26秒前
研友_VZG7GZ应助Broadway Zhang采纳,获得10
26秒前
27秒前
量子星尘发布了新的文献求助10
27秒前
joy0523发布了新的文献求助10
29秒前
30秒前
申左一发布了新的文献求助10
31秒前
31秒前
111111完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601459
求助须知:如何正确求助?哪些是违规求助? 4011101
关于积分的说明 12418523
捐赠科研通 3691131
什么是DOI,文献DOI怎么找? 2034884
邀请新用户注册赠送积分活动 1068198
科研通“疑难数据库(出版商)”最低求助积分说明 952739