亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Nonlinear Dimensionality Reduction for Data Visualization: An Unsupervised Fuzzy Rule-Based Approach

降维 非线性降维 可视化 计算机科学 聚类分析 数据点 人工智能 欧几里德距离 背景(考古学) 数据挖掘 数学 生物 古生物学
作者
Suchismita Das,Nikhil R. Pal
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (7): 2157-2169 被引量:11
标识
DOI:10.1109/tfuzz.2021.3076583
摘要

Here, we propose an unsupervised fuzzy rule-based dimensionality reduction method primarily for data visualization. It considers the following important issues relevant to dimensionality reduction-based data visualization: (i) preservation of neighborhood relationships, (ii) handling data on a non-linear manifold, (iii) the capability of predicting projections for new test data points, (iv) interpretability of the system, and (v) the ability to reject test points if required. For this, we use a first-order Takagi-Sugeno type model. We generate rule antecedents using clusters in the input data. In this context, we also propose a new variant of the Geodesic c-means clustering algorithm. We estimate the rule parameters by minimizing an error function that preserves the inter-point geodesic distances (distances over the manifold) as Euclidean distances on the projected space. We apply the proposed method on three synthetic and three real-world data sets and visually compare the results with four other standard data visualization methods. The obtained results show that the proposed method behaves desirably and performs better than or comparable to the methods compared with. The proposed method is found to be robust to the initial conditions. The predictability of the proposed method for test points is validated by experiments. We also assess the ability of our method to reject output points when it should. Then, we extend this concept to provide a general framework for learning an unsupervised fuzzy model for data projection with different objective functions. To the best of our knowledge, this is the first attempt to manifold learning using unsupervised fuzzy modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
12秒前
英喆完成签到 ,获得积分10
30秒前
48秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助30
1分钟前
正直箴完成签到,获得积分10
1分钟前
正直箴发布了新的文献求助10
2分钟前
LaFee完成签到,获得积分10
2分钟前
HaoHao04发布了新的文献求助10
2分钟前
2分钟前
2分钟前
隐形曼青应助夕夜采纳,获得10
2分钟前
幽默的溪灵应助米粒采纳,获得10
2分钟前
3分钟前
jenningseastera应助米粒采纳,获得10
3分钟前
夕夜发布了新的文献求助10
3分钟前
HaoHao04完成签到 ,获得积分10
3分钟前
夕夜完成签到,获得积分10
3分钟前
米粒完成签到,获得积分10
3分钟前
SciGPT应助科研通管家采纳,获得10
3分钟前
CipherSage应助科研通管家采纳,获得10
3分钟前
酷波er应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
吴昕昕完成签到,获得积分10
3分钟前
3分钟前
4分钟前
yu发布了新的文献求助10
4分钟前
4分钟前
4分钟前
畅快山兰完成签到 ,获得积分10
4分钟前
幽默曼冬完成签到,获得积分10
4分钟前
共享精神应助无私的薯片采纳,获得10
4分钟前
jyy应助梨子茶采纳,获得10
4分钟前
yu关注了科研通微信公众号
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
5分钟前
搜集达人应助无私的薯片采纳,获得10
5分钟前
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960135
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128683
捐赠科研通 3238299
什么是DOI,文献DOI怎么找? 1789684
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069