Nonlinear Dimensionality Reduction for Data Visualization: An Unsupervised Fuzzy Rule-Based Approach

降维 非线性降维 可视化 计算机科学 聚类分析 数据点 人工智能 欧几里德距离 背景(考古学) 数据挖掘 数学 古生物学 生物
作者
Suchismita Das,Nikhil R. Pal
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (7): 2157-2169 被引量:11
标识
DOI:10.1109/tfuzz.2021.3076583
摘要

Here, we propose an unsupervised fuzzy rule-based dimensionality reduction method primarily for data visualization. It considers the following important issues relevant to dimensionality reduction-based data visualization: (i) preservation of neighborhood relationships, (ii) handling data on a non-linear manifold, (iii) the capability of predicting projections for new test data points, (iv) interpretability of the system, and (v) the ability to reject test points if required. For this, we use a first-order Takagi-Sugeno type model. We generate rule antecedents using clusters in the input data. In this context, we also propose a new variant of the Geodesic c-means clustering algorithm. We estimate the rule parameters by minimizing an error function that preserves the inter-point geodesic distances (distances over the manifold) as Euclidean distances on the projected space. We apply the proposed method on three synthetic and three real-world data sets and visually compare the results with four other standard data visualization methods. The obtained results show that the proposed method behaves desirably and performs better than or comparable to the methods compared with. The proposed method is found to be robust to the initial conditions. The predictability of the proposed method for test points is validated by experiments. We also assess the ability of our method to reject output points when it should. Then, we extend this concept to provide a general framework for learning an unsupervised fuzzy model for data projection with different objective functions. To the best of our knowledge, this is the first attempt to manifold learning using unsupervised fuzzy modeling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hello应助而风不止采纳,获得10
2秒前
yuky完成签到,获得积分10
2秒前
3秒前
cc发布了新的文献求助10
3秒前
临猗下大雨完成签到,获得积分10
3秒前
xyz发布了新的文献求助10
3秒前
健壮魂幽完成签到,获得积分20
4秒前
4秒前
温与暖完成签到,获得积分10
5秒前
minmi发布了新的文献求助10
5秒前
5秒前
情怀应助佳哥闯天下采纳,获得10
6秒前
haishanhu完成签到 ,获得积分10
6秒前
6秒前
lve完成签到,获得积分10
6秒前
7秒前
lixiang完成签到,获得积分10
7秒前
8秒前
清脆的妙之完成签到,获得积分20
8秒前
8秒前
9秒前
9秒前
传奇3应助蓝鲸采纳,获得10
9秒前
CodeCraft应助蓝鲸采纳,获得10
9秒前
思源应助蓝鲸采纳,获得10
9秒前
科研通AI6应助蓝鲸采纳,获得10
9秒前
今后应助蓝鲸采纳,获得10
9秒前
华仔应助cqh采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
lve发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
Hui_2023发布了新的文献求助10
12秒前
hhh完成签到,获得积分10
12秒前
12秒前
13秒前
mmgf发布了新的文献求助10
13秒前
Ava应助覃小冬采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594647
求助须知:如何正确求助?哪些是违规求助? 4680250
关于积分的说明 14813852
捐赠科研通 4647712
什么是DOI,文献DOI怎么找? 2535081
邀请新用户注册赠送积分活动 1503074
关于科研通互助平台的介绍 1469521