已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Accurate Prediction of Coronary Heart Disease for Patients With Hypertension From Electronic Health Records With Big Data and Machine-Learning Methods: Model Development and Performance Evaluation

机器学习 逻辑回归 接收机工作特性 医学 人工智能 试验装置 人口 计算机科学 集成学习 随机森林 统计 大数据 数据挖掘 数学 环境卫生
作者
Zhenzhen Du,Yujie Yang,Jing Zheng,Qi Li,Denan Lin,Ye Li,Jianping Fan,Wen Cheng,Xie-Hui Chen,Yunpeng Cai
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:8 (7): e17257-e17257 被引量:68
标识
DOI:10.2196/17257
摘要

Predictions of cardiovascular disease risks based on health records have long attracted broad research interests. Despite extensive efforts, the prediction accuracy has remained unsatisfactory. This raises the question as to whether the data insufficiency, statistical and machine-learning methods, or intrinsic noise have hindered the performance of previous approaches, and how these issues can be alleviated.Based on a large population of patients with hypertension in Shenzhen, China, we aimed to establish a high-precision coronary heart disease (CHD) prediction model through big data and machine-learning.Data from a large cohort of 42,676 patients with hypertension, including 20,156 patients with CHD onset, were investigated from electronic health records (EHRs) 1-3 years prior to CHD onset (for CHD-positive cases) or during a disease-free follow-up period of more than 3 years (for CHD-negative cases). The population was divided evenly into independent training and test datasets. Various machine-learning methods were adopted on the training set to achieve high-accuracy prediction models and the results were compared with traditional statistical methods and well-known risk scales. Comparison analyses were performed to investigate the effects of training sample size, factor sets, and modeling approaches on the prediction performance.An ensemble method, XGBoost, achieved high accuracy in predicting 3-year CHD onset for the independent test dataset with an area under the receiver operating characteristic curve (AUC) value of 0.943. Comparison analysis showed that nonlinear models (K-nearest neighbor AUC 0.908, random forest AUC 0.938) outperform linear models (logistic regression AUC 0.865) on the same datasets, and machine-learning methods significantly surpassed traditional risk scales or fixed models (eg, Framingham cardiovascular disease risk models). Further analyses revealed that using time-dependent features obtained from multiple records, including both statistical variables and changing-trend variables, helped to improve the performance compared to using only static features. Subpopulation analysis showed that the impact of feature design had a more significant effect on model accuracy than the population size. Marginal effect analysis showed that both traditional and EHR factors exhibited highly nonlinear characteristics with respect to the risk scores.We demonstrated that accurate risk prediction of CHD from EHRs is possible given a sufficiently large population of training data. Sophisticated machine-learning methods played an important role in tackling the heterogeneity and nonlinear nature of disease prediction. Moreover, accumulated EHR data over multiple time points provided additional features that were valuable for risk prediction. Our study highlights the importance of accumulating big data from EHRs for accurate disease predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助lalala采纳,获得30
4秒前
5秒前
Jasper应助nana采纳,获得10
7秒前
马大人..完成签到,获得积分10
8秒前
8秒前
9秒前
miaoda完成签到,获得积分10
10秒前
又又发布了新的文献求助10
10秒前
ww发布了新的文献求助10
13秒前
马大人..发布了新的文献求助10
14秒前
JIE完成签到,获得积分10
16秒前
17秒前
搜集达人应助鸿儒采纳,获得10
17秒前
fenmar发布了新的文献求助10
22秒前
hgc关闭了hgc文献求助
30秒前
Jasper应助又又采纳,获得10
30秒前
34秒前
小二郎应助高高的无敌采纳,获得10
35秒前
852应助鲁晓涵采纳,获得10
36秒前
42秒前
Akim应助yyyy采纳,获得10
43秒前
45秒前
Qikll发布了新的文献求助30
45秒前
50秒前
在水一方应助张文静采纳,获得10
51秒前
华仔应助zc采纳,获得10
52秒前
寒冷荧荧完成签到,获得积分10
53秒前
kk关闭了kk文献求助
53秒前
53秒前
hgc发布了新的文献求助80
54秒前
离拾发布了新的文献求助10
54秒前
55秒前
DDX发布了新的文献求助30
56秒前
所所应助科研通管家采纳,获得10
58秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
香蕉觅云应助科研通管家采纳,获得10
58秒前
领导范儿应助科研通管家采纳,获得10
59秒前
无花果应助科研通管家采纳,获得10
59秒前
59秒前
59秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314210
求助须知:如何正确求助?哪些是违规求助? 2946566
关于积分的说明 8530692
捐赠科研通 2622261
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665307
邀请新用户注册赠送积分活动 650838