亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accurate Prediction of Coronary Heart Disease for Patients With Hypertension From Electronic Health Records With Big Data and Machine-Learning Methods: Model Development and Performance Evaluation

机器学习 逻辑回归 接收机工作特性 医学 人工智能 试验装置 人口 计算机科学 集成学习 随机森林 统计 大数据 数据挖掘 数学 环境卫生
作者
Zhenzhen Du,Yujie Yang,Jing Zheng,Qi Li,Denan Lin,Ye Li,Jianping Fan,Wen Cheng,Xie-Hui Chen,Yunpeng Cai
出处
期刊:JMIR medical informatics [JMIR Publications]
卷期号:8 (7): e17257-e17257 被引量:68
标识
DOI:10.2196/17257
摘要

Predictions of cardiovascular disease risks based on health records have long attracted broad research interests. Despite extensive efforts, the prediction accuracy has remained unsatisfactory. This raises the question as to whether the data insufficiency, statistical and machine-learning methods, or intrinsic noise have hindered the performance of previous approaches, and how these issues can be alleviated.Based on a large population of patients with hypertension in Shenzhen, China, we aimed to establish a high-precision coronary heart disease (CHD) prediction model through big data and machine-learning.Data from a large cohort of 42,676 patients with hypertension, including 20,156 patients with CHD onset, were investigated from electronic health records (EHRs) 1-3 years prior to CHD onset (for CHD-positive cases) or during a disease-free follow-up period of more than 3 years (for CHD-negative cases). The population was divided evenly into independent training and test datasets. Various machine-learning methods were adopted on the training set to achieve high-accuracy prediction models and the results were compared with traditional statistical methods and well-known risk scales. Comparison analyses were performed to investigate the effects of training sample size, factor sets, and modeling approaches on the prediction performance.An ensemble method, XGBoost, achieved high accuracy in predicting 3-year CHD onset for the independent test dataset with an area under the receiver operating characteristic curve (AUC) value of 0.943. Comparison analysis showed that nonlinear models (K-nearest neighbor AUC 0.908, random forest AUC 0.938) outperform linear models (logistic regression AUC 0.865) on the same datasets, and machine-learning methods significantly surpassed traditional risk scales or fixed models (eg, Framingham cardiovascular disease risk models). Further analyses revealed that using time-dependent features obtained from multiple records, including both statistical variables and changing-trend variables, helped to improve the performance compared to using only static features. Subpopulation analysis showed that the impact of feature design had a more significant effect on model accuracy than the population size. Marginal effect analysis showed that both traditional and EHR factors exhibited highly nonlinear characteristics with respect to the risk scores.We demonstrated that accurate risk prediction of CHD from EHRs is possible given a sufficiently large population of training data. Sophisticated machine-learning methods played an important role in tackling the heterogeneity and nonlinear nature of disease prediction. Moreover, accumulated EHR data over multiple time points provided additional features that were valuable for risk prediction. Our study highlights the importance of accumulating big data from EHRs for accurate disease predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuxifan完成签到,获得积分10
21秒前
48秒前
量子星尘发布了新的文献求助10
52秒前
yx_cheng应助科研通管家采纳,获得10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
stupidZ发布了新的文献求助10
2分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
Tiger完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
所所应助都可以采纳,获得10
4分钟前
杪夏二八完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
yang发布了新的文献求助50
5分钟前
Zephyr发布了新的文献求助30
5分钟前
顾矜应助如沐春风采纳,获得10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
7分钟前
打打应助wbs13521采纳,获得10
7分钟前
stupidZ完成签到,获得积分10
7分钟前
8分钟前
岁和景明完成签到 ,获得积分10
8分钟前
国色不染尘完成签到,获得积分10
8分钟前
慕容雅柏完成签到 ,获得积分10
8分钟前
9分钟前
yx_cheng应助科研通管家采纳,获得10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
光合作用完成签到,获得积分10
9分钟前
10分钟前
10分钟前
研友_ngqoE8完成签到,获得积分10
10分钟前
10分钟前
跳跃毒娘发布了新的文献求助10
10分钟前
10分钟前
量子星尘发布了新的文献求助10
10分钟前
11分钟前
yx_cheng应助科研通管家采纳,获得10
11分钟前
Ava应助科研通管家采纳,获得10
11分钟前
yx_cheng应助科研通管家采纳,获得10
11分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008310
求助须知:如何正确求助?哪些是违规求助? 3548041
关于积分的说明 11298654
捐赠科研通 3282878
什么是DOI,文献DOI怎么找? 1810249
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188