Accurate Prediction of Coronary Heart Disease for Patients With Hypertension From Electronic Health Records With Big Data and Machine-Learning Methods: Model Development and Performance Evaluation

机器学习 逻辑回归 接收机工作特性 医学 人工智能 试验装置 人口 计算机科学 集成学习 随机森林 统计 大数据 数据挖掘 数学 环境卫生
作者
Zhenzhen Du,Yujie Yang,Jing Zheng,Qi Li,Denan Lin,Ye Li,Jianping Fan,Wen Cheng,Xie-Hui Chen,Yunpeng Cai
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:8 (7): e17257-e17257 被引量:88
标识
DOI:10.2196/17257
摘要

Background Predictions of cardiovascular disease risks based on health records have long attracted broad research interests. Despite extensive efforts, the prediction accuracy has remained unsatisfactory. This raises the question as to whether the data insufficiency, statistical and machine-learning methods, or intrinsic noise have hindered the performance of previous approaches, and how these issues can be alleviated. Objective Based on a large population of patients with hypertension in Shenzhen, China, we aimed to establish a high-precision coronary heart disease (CHD) prediction model through big data and machine-learning Methods Data from a large cohort of 42,676 patients with hypertension, including 20,156 patients with CHD onset, were investigated from electronic health records (EHRs) 1-3 years prior to CHD onset (for CHD-positive cases) or during a disease-free follow-up period of more than 3 years (for CHD-negative cases). The population was divided evenly into independent training and test datasets. Various machine-learning methods were adopted on the training set to achieve high-accuracy prediction models and the results were compared with traditional statistical methods and well-known risk scales. Comparison analyses were performed to investigate the effects of training sample size, factor sets, and modeling approaches on the prediction performance. Results An ensemble method, XGBoost, achieved high accuracy in predicting 3-year CHD onset for the independent test dataset with an area under the receiver operating characteristic curve (AUC) value of 0.943. Comparison analysis showed that nonlinear models (K-nearest neighbor AUC 0.908, random forest AUC 0.938) outperform linear models (logistic regression AUC 0.865) on the same datasets, and machine-learning methods significantly surpassed traditional risk scales or fixed models (eg, Framingham cardiovascular disease risk models). Further analyses revealed that using time-dependent features obtained from multiple records, including both statistical variables and changing-trend variables, helped to improve the performance compared to using only static features. Subpopulation analysis showed that the impact of feature design had a more significant effect on model accuracy than the population size. Marginal effect analysis showed that both traditional and EHR factors exhibited highly nonlinear characteristics with respect to the risk scores. Conclusions We demonstrated that accurate risk prediction of CHD from EHRs is possible given a sufficiently large population of training data. Sophisticated machine-learning methods played an important role in tackling the heterogeneity and nonlinear nature of disease prediction. Moreover, accumulated EHR data over multiple time points provided additional features that were valuable for risk prediction. Our study highlights the importance of accumulating big data from EHRs for accurate disease predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
量子星尘发布了新的文献求助10
3秒前
mine发布了新的文献求助10
3秒前
3秒前
yuxia发布了新的文献求助10
4秒前
4秒前
谷大喵唔完成签到,获得积分20
4秒前
暴躁的太阳完成签到,获得积分10
4秒前
研友_VZG7GZ应助大力的图图采纳,获得10
4秒前
噜噜发布了新的文献求助30
4秒前
默默芝麻完成签到,获得积分10
4秒前
6秒前
科研通AI6.1应助坚定芷卉采纳,获得10
7秒前
Dongsy完成签到,获得积分10
8秒前
8秒前
白白发布了新的文献求助10
9秒前
6666完成签到,获得积分10
9秒前
10秒前
10秒前
光亮白猫发布了新的文献求助10
11秒前
yuxia完成签到,获得积分20
11秒前
12秒前
彭于晏应助Yuanyuan采纳,获得10
12秒前
6666发布了新的文献求助10
15秒前
16秒前
Dongsy发布了新的文献求助10
16秒前
ccd发布了新的文献求助10
16秒前
陈宝关注了科研通微信公众号
17秒前
沉默的早晨完成签到,获得积分10
17秒前
轻松的千亦完成签到 ,获得积分10
18秒前
18秒前
18秒前
20秒前
21秒前
欢呼的飞荷完成签到 ,获得积分10
23秒前
嘟嘟嘟完成签到,获得积分10
24秒前
22发布了新的文献求助10
24秒前
25秒前
开心重要发布了新的文献求助10
25秒前
科目三应助bbllxyl采纳,获得10
26秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5745790
求助须知:如何正确求助?哪些是违规求助? 5428839
关于积分的说明 15354057
捐赠科研通 4885730
什么是DOI,文献DOI怎么找? 2626877
邀请新用户注册赠送积分活动 1575405
关于科研通互助平台的介绍 1532140