Accurate Prediction of Coronary Heart Disease for Patients With Hypertension From Electronic Health Records With Big Data and Machine-Learning Methods: Model Development and Performance Evaluation

机器学习 逻辑回归 接收机工作特性 医学 人工智能 试验装置 人口 计算机科学 集成学习 随机森林 统计 大数据 数据挖掘 数学 环境卫生
作者
Zhenzhen Du,Yujie Yang,Jing Zheng,Qi Li,Denan Lin,Ye Li,Jianping Fan,Wen Cheng,Xie-Hui Chen,Yunpeng Cai
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:8 (7): e17257-e17257 被引量:88
标识
DOI:10.2196/17257
摘要

Background Predictions of cardiovascular disease risks based on health records have long attracted broad research interests. Despite extensive efforts, the prediction accuracy has remained unsatisfactory. This raises the question as to whether the data insufficiency, statistical and machine-learning methods, or intrinsic noise have hindered the performance of previous approaches, and how these issues can be alleviated. Objective Based on a large population of patients with hypertension in Shenzhen, China, we aimed to establish a high-precision coronary heart disease (CHD) prediction model through big data and machine-learning Methods Data from a large cohort of 42,676 patients with hypertension, including 20,156 patients with CHD onset, were investigated from electronic health records (EHRs) 1-3 years prior to CHD onset (for CHD-positive cases) or during a disease-free follow-up period of more than 3 years (for CHD-negative cases). The population was divided evenly into independent training and test datasets. Various machine-learning methods were adopted on the training set to achieve high-accuracy prediction models and the results were compared with traditional statistical methods and well-known risk scales. Comparison analyses were performed to investigate the effects of training sample size, factor sets, and modeling approaches on the prediction performance. Results An ensemble method, XGBoost, achieved high accuracy in predicting 3-year CHD onset for the independent test dataset with an area under the receiver operating characteristic curve (AUC) value of 0.943. Comparison analysis showed that nonlinear models (K-nearest neighbor AUC 0.908, random forest AUC 0.938) outperform linear models (logistic regression AUC 0.865) on the same datasets, and machine-learning methods significantly surpassed traditional risk scales or fixed models (eg, Framingham cardiovascular disease risk models). Further analyses revealed that using time-dependent features obtained from multiple records, including both statistical variables and changing-trend variables, helped to improve the performance compared to using only static features. Subpopulation analysis showed that the impact of feature design had a more significant effect on model accuracy than the population size. Marginal effect analysis showed that both traditional and EHR factors exhibited highly nonlinear characteristics with respect to the risk scores. Conclusions We demonstrated that accurate risk prediction of CHD from EHRs is possible given a sufficiently large population of training data. Sophisticated machine-learning methods played an important role in tackling the heterogeneity and nonlinear nature of disease prediction. Moreover, accumulated EHR data over multiple time points provided additional features that were valuable for risk prediction. Our study highlights the importance of accumulating big data from EHRs for accurate disease predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小半发布了新的文献求助10
刚刚
1秒前
加减法发布了新的文献求助10
1秒前
传奇3应助糯糯采纳,获得10
2秒前
3秒前
zws发布了新的文献求助10
3秒前
完美世界应助trabbit采纳,获得10
3秒前
4秒前
4秒前
乐观伟诚发布了新的文献求助10
5秒前
小美完成签到 ,获得积分10
5秒前
zhou235发布了新的文献求助10
6秒前
6秒前
张晨旭完成签到,获得积分20
6秒前
7秒前
传奇3应助春分夏至采纳,获得10
7秒前
xiaowang发布了新的文献求助10
7秒前
8秒前
FashionBoy应助赛赛采纳,获得10
8秒前
Oct_Y完成签到,获得积分10
8秒前
wuhanfei完成签到,获得积分10
8秒前
ggun完成签到,获得积分20
9秒前
9秒前
沐风发布了新的文献求助10
9秒前
10秒前
张晨旭发布了新的文献求助10
10秒前
糯糯发布了新的文献求助10
10秒前
阿斯顿完成签到,获得积分10
10秒前
齐婷婷发布了新的文献求助10
11秒前
xiao_J完成签到,获得积分10
11秒前
olia发布了新的文献求助10
12秒前
12秒前
123发布了新的文献求助10
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
晓宏发布了新的文献求助10
13秒前
14秒前
llly发布了新的文献求助10
14秒前
king_creole完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406441
求助须知:如何正确求助?哪些是违规求助? 4524437
关于积分的说明 14098224
捐赠科研通 4438201
什么是DOI,文献DOI怎么找? 2436040
邀请新用户注册赠送积分活动 1428184
关于科研通互助平台的介绍 1406292