A comprehensive review on convolutional neural network in machine fault diagnosis

计算机科学 卷积神经网络 领域(数学) 过程(计算) 人工智能 机器学习 断层(地质) 数据科学 特征(语言学) 人工神经网络 地质学 哲学 操作系统 地震学 纯数学 语言学 数学
作者
Jinyang Jiao,Ming Zhao,Jing Lin,Kaixuan Liang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:417: 36-63 被引量:407
标识
DOI:10.1016/j.neucom.2020.07.088
摘要

With the rapid development of manufacturing industry, machine fault diagnosis has become increasingly significant to ensure safe equipment operation and production. Consequently, multifarious approaches have been explored and developed in the past years, of which intelligent algorithms develop particularly rapidly. Convolutional neural network (CNN), as a typical representative of intelligent diagnostic models, has been extensively studied and applied in recent five years, and a large amount of literature has been published in academic journals and conference proceedings. However, there has not been a systematic review to cover these studies and make a prospect for the further research. To fill in this gap, this work attempts to review and summarize the development of the Convolutional Network based Fault Diagnosis (CNFD) approaches comprehensively. Generally, a typical CNFD framework is composed of the following steps, namely, data collection, model construction, and feature learning and decision making, thus this paper is organized by following this stream. Firstly, data collection process is described, in which several popular datasets are introduced. Then, the fundamental theory from the basic CNN to its variants is elaborated. After that, the applications of CNFD are reviewed in terms of three mainstream directions, i.e. classification, prediction and transfer diagnosis. Finally, conclusions and prospects are presented to point out the characteristics of current development, facing challenges and future trends. Last but not least, it is expected that this work would provide convenience and inspire further exploration for researchers in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琳琳完成签到,获得积分10
1秒前
1秒前
3秒前
hanyuxin完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
JamesPei应助WYF采纳,获得10
6秒前
coco发布了新的文献求助10
6秒前
海绵宝宝发布了新的文献求助10
8秒前
旧旧完成签到 ,获得积分10
9秒前
9秒前
爱学习哦完成签到,获得积分10
10秒前
10秒前
11秒前
奋斗枫完成签到,获得积分10
11秒前
coco完成签到,获得积分10
12秒前
酷波er应助jdwxiang123采纳,获得10
13秒前
13秒前
14秒前
勿忘心安完成签到,获得积分10
15秒前
15秒前
奶盖发布了新的文献求助10
15秒前
九天完成签到,获得积分20
15秒前
16秒前
18秒前
震动的涵瑶完成签到,获得积分20
18秒前
WYF发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
weirb发布了新的文献求助30
22秒前
科研通AI5应助学术草履虫采纳,获得10
22秒前
22秒前
Panda发布了新的文献求助10
22秒前
华子黄发布了新的文献求助10
23秒前
23秒前
23秒前
蝈蝈完成签到,获得积分20
23秒前
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741086
求助须知:如何正确求助?哪些是违规求助? 3283852
关于积分的说明 10037232
捐赠科研通 3000684
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783858
科研通“疑难数据库(出版商)”最低求助积分说明 750442