Push–Pull Gradient Methods for Distributed Optimization in Networks

八卦 数学优化 计算机科学 异步通信 分布式算法 凸函数 凸优化 节点(物理) 功能(生物学) 最优化问题 变量(数学) 信息交流 正多边形 分布式计算 数学 生物 进化生物学 工程类 社会心理学 数学分析 电信 结构工程 计算机网络 心理学 几何学
作者
Shi Pu,Wei Shi,Jinming Xu,Angelia Nedić
出处
期刊:IEEE Transactions on Automatic Control [Institute of Electrical and Electronics Engineers]
卷期号:66 (1): 1-16 被引量:155
标识
DOI:10.1109/tac.2020.2972824
摘要

In this article, we focus on solving a distributed convex optimization problem in a network, where each agent has its own convex cost function and the goal is to minimize the sum of the agents' cost functions while obeying the network connectivity structure. In order to minimize the sum of the cost functions, we consider new distributed gradient-based methods where each node maintains two estimates, namely an estimate of the optimal decision variable and an estimate of the gradient for the average of the agents' objective functions. From the viewpoint of an agent, the information about the gradients is pushed to the neighbors, whereas the information about the decision variable is pulled from the neighbors, hence giving the name “push-pull gradient methods.” The methods utilize two different graphs for the information exchange among agents and, as such, unify the algorithms with different types of distributed architecture, including decentralized (peer to peer), centralized (master-slave), and semicentralized (leader-follower) architectures. We show that the proposed algorithms and their many variants converge linearly for strongly convex and smooth objective functions over a network (possibly with unidirectional data links) in both synchronous and asynchronous random-gossip settings. In particular, under the random-gossip setting, “push-pull” is the first class of algorithms for distributed optimization over directed graphs. Moreover, we numerically evaluate our proposed algorithms in both scenarios, and show that they outperform other existing linearly convergent schemes, especially for ill-conditioned problems and networks that are not well balanced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小机灵鬼儿完成签到,获得积分10
3秒前
4秒前
xuxuxu完成签到,获得积分10
4秒前
YUAN完成签到,获得积分10
4秒前
成就的灵薇完成签到,获得积分10
5秒前
无花果应助七七采纳,获得10
6秒前
7秒前
星辰大海应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
子车茗应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
9秒前
wangli应助科研通管家采纳,获得10
9秒前
9秒前
怕黑紫伊发布了新的文献求助10
10秒前
YUAN发布了新的文献求助10
10秒前
ZZX关闭了ZZX文献求助
11秒前
肖福艳发布了新的文献求助10
12秒前
俭朴的雅彤完成签到,获得积分10
13秒前
踏实的尔柳关注了科研通微信公众号
13秒前
14秒前
15秒前
田様应助懒大王采纳,获得10
16秒前
17秒前
852应助长安采纳,获得10
18秒前
19秒前
20秒前
秋毫之末完成签到,获得积分10
20秒前
dy完成签到,获得积分10
21秒前
21秒前
旺旺碎发布了新的文献求助10
21秒前
21秒前
李健应助雾眠气泡水采纳,获得10
22秒前
大个应助semon采纳,获得10
24秒前
上官若男应助小羊采纳,获得10
24秒前
24秒前
25秒前
EVEN完成签到 ,获得积分10
26秒前
28秒前
秋毫之末发布了新的文献求助50
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161167
求助须知:如何正确求助?哪些是违规求助? 2812556
关于积分的说明 7895642
捐赠科研通 2471395
什么是DOI,文献DOI怎么找? 1315977
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112