Push–Pull Gradient Methods for Distributed Optimization in Networks

八卦 数学优化 计算机科学 异步通信 分布式算法 凸函数 凸优化 节点(物理) 功能(生物学) 最优化问题 变量(数学) 信息交流 正多边形 分布式计算 数学 生物 进化生物学 工程类 社会心理学 数学分析 电信 结构工程 计算机网络 心理学 几何学
作者
Shi Pu,Wei Shi,Jinming Xu,Angelia Nedić
出处
期刊:IEEE Transactions on Automatic Control [Institute of Electrical and Electronics Engineers]
卷期号:66 (1): 1-16 被引量:260
标识
DOI:10.1109/tac.2020.2972824
摘要

In this article, we focus on solving a distributed convex optimization problem in a network, where each agent has its own convex cost function and the goal is to minimize the sum of the agents' cost functions while obeying the network connectivity structure. In order to minimize the sum of the cost functions, we consider new distributed gradient-based methods where each node maintains two estimates, namely an estimate of the optimal decision variable and an estimate of the gradient for the average of the agents' objective functions. From the viewpoint of an agent, the information about the gradients is pushed to the neighbors, whereas the information about the decision variable is pulled from the neighbors, hence giving the name "push-pull gradient methods." The methods utilize two different graphs for the information exchange among agents and, as such, unify the algorithms with different types of distributed architecture, including decentralized (peer to peer), centralized (master-slave), and semicentralized (leader-follower) architectures. We show that the proposed algorithms and their many variants converge linearly for strongly convex and smooth objective functions over a network (possibly with unidirectional data links) in both synchronous and asynchronous random-gossip settings. In particular, under the random-gossip setting, "push-pull" is the first class of algorithms for distributed optimization over directed graphs. Moreover, we numerically evaluate our proposed algorithms in both scenarios, and show that they outperform other existing linearly convergent schemes, especially for ill-conditioned problems and networks that are not well balanced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助孤独士晋采纳,获得10
刚刚
1秒前
echo发布了新的文献求助20
2秒前
4秒前
Victoria发布了新的文献求助10
4秒前
多情含灵发布了新的文献求助10
5秒前
慕青应助JackeyChen采纳,获得10
6秒前
小马甲应助忧虑的冰姬采纳,获得10
6秒前
6秒前
烟花应助123采纳,获得10
7秒前
cc完成签到,获得积分20
7秒前
7秒前
8秒前
AZUSA完成签到,获得积分20
9秒前
9秒前
在水一方应助猪猪院长采纳,获得10
9秒前
10秒前
朴素烧鹅发布了新的文献求助10
10秒前
superbada完成签到,获得积分10
11秒前
nanween完成签到,获得积分10
11秒前
zhaoyy发布了新的文献求助10
11秒前
11秒前
chang发布了新的文献求助10
13秒前
13秒前
13秒前
hhhi应助虚幻靖易采纳,获得10
14秒前
丘比特应助老武采纳,获得10
14秒前
15秒前
科目三应助frl采纳,获得10
15秒前
cookie完成签到,获得积分10
15秒前
畅快的天空完成签到,获得积分10
17秒前
bbanshan完成签到,获得积分10
17秒前
四时万物兮完成签到,获得积分10
18秒前
Orange应助yshhhhhhhh采纳,获得10
19秒前
隐形曼青应助哈哈哈哈哈采纳,获得10
20秒前
21秒前
Victoria发布了新的文献求助10
22秒前
22秒前
FancyShi发布了新的文献求助30
23秒前
小牧鱼完成签到,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988646
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252059
捐赠科研通 3269632
什么是DOI,文献DOI怎么找? 1804713
邀请新用户注册赠送积分活动 881865
科研通“疑难数据库(出版商)”最低求助积分说明 809012