Push–Pull Gradient Methods for Distributed Optimization in Networks

八卦 数学优化 计算机科学 异步通信 分布式算法 凸函数 凸优化 节点(物理) 功能(生物学) 最优化问题 变量(数学) 信息交流 正多边形 分布式计算 数学 生物 进化生物学 工程类 社会心理学 数学分析 电信 结构工程 计算机网络 心理学 几何学
作者
Shi Pu,Wei Shi,Jinming Xu,Angelia Nedić
出处
期刊:IEEE Transactions on Automatic Control [Institute of Electrical and Electronics Engineers]
卷期号:66 (1): 1-16 被引量:155
标识
DOI:10.1109/tac.2020.2972824
摘要

In this article, we focus on solving a distributed convex optimization problem in a network, where each agent has its own convex cost function and the goal is to minimize the sum of the agents' cost functions while obeying the network connectivity structure. In order to minimize the sum of the cost functions, we consider new distributed gradient-based methods where each node maintains two estimates, namely an estimate of the optimal decision variable and an estimate of the gradient for the average of the agents' objective functions. From the viewpoint of an agent, the information about the gradients is pushed to the neighbors, whereas the information about the decision variable is pulled from the neighbors, hence giving the name “push-pull gradient methods.” The methods utilize two different graphs for the information exchange among agents and, as such, unify the algorithms with different types of distributed architecture, including decentralized (peer to peer), centralized (master-slave), and semicentralized (leader-follower) architectures. We show that the proposed algorithms and their many variants converge linearly for strongly convex and smooth objective functions over a network (possibly with unidirectional data links) in both synchronous and asynchronous random-gossip settings. In particular, under the random-gossip setting, “push-pull” is the first class of algorithms for distributed optimization over directed graphs. Moreover, we numerically evaluate our proposed algorithms in both scenarios, and show that they outperform other existing linearly convergent schemes, especially for ill-conditioned problems and networks that are not well balanced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助laodie采纳,获得10
1秒前
Singularity应助忆楠采纳,获得10
2秒前
3秒前
请叫我风吹麦浪应助PengHu采纳,获得30
4秒前
jjjjjj完成签到,获得积分10
4秒前
凝子老师发布了新的文献求助10
6秒前
6秒前
橙子fy16_发布了新的文献求助10
8秒前
cookie完成签到,获得积分10
8秒前
柒柒的小熊完成签到,获得积分10
9秒前
9秒前
Hello应助萌之痴痴采纳,获得10
10秒前
hahaer完成签到,获得积分10
12秒前
领导范儿应助失眠虔纹采纳,获得10
13秒前
14秒前
Owen应助凝子老师采纳,获得10
17秒前
17秒前
南宫炽滔完成签到 ,获得积分10
19秒前
19秒前
丘比特应助飞羽采纳,获得10
20秒前
沙拉发布了新的文献求助10
20秒前
21秒前
22秒前
椰子糖完成签到 ,获得积分10
23秒前
23秒前
ZHU完成签到,获得积分10
24秒前
阳阳发布了新的文献求助10
25秒前
Raymond应助雪山飞龙采纳,获得10
25秒前
kk发布了新的文献求助10
26秒前
26秒前
27秒前
27秒前
27秒前
28秒前
31秒前
果果瑞宁发布了新的文献求助10
31秒前
wewewew发布了新的文献求助10
31秒前
31秒前
打打应助沙拉采纳,获得10
31秒前
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849