Hyperspectral imaging and improved feature variable selection for automated determination of deoxynivalenol in various genetic lines of barley kernels for resistance screening

高光谱成像 偏最小二乘回归 特征选择 镰刀菌 真菌毒素 人工智能 数学 计算机科学 生物 食品科学 统计 植物
作者
Wen‐Hao Su,Ce Yang,Yanhong Dong,Ryan Johnson,Rae Page,Tamas Szinyei,Cory D. Hirsch,Brian J. Steffenson
出处
期刊:Food Chemistry [Elsevier BV]
卷期号:343: 128507-128507 被引量:58
标识
DOI:10.1016/j.foodchem.2020.128507
摘要

Abstract Fusarium head blight (FHB), a fungus disease of small grain cereal crops, results in reduced yields and diminished value of harvested grain due to the presence of deoxynivalenol (DON), a mycotoxin produced by the causal pathogen Fusarium graminearum. DON and other tricothecene mycotoxins pose serious health risks to both humans and livestock, especially swine. Due to these health concerns, barley used for malting, food or feed is routinely assayed for DON levels. Various methods are available for assaying DON levels in grain samples including enzyme-linked immunosorbent assay (ELISA) and gas chromatography-mass spectrometry (GC-MS). ELISA and GC-MS are very accurate; however, assaying grain samples by these techniques are laborious, expensive and destructive. In this study, we explored the feasibility of using hyperspectral imaging (382–1030 nm) to develop a rapid and non-destructive protocol for assaying DON in barley kernels. Samples of 888 and 116 from various genetic lines were selected for calibration and prediction. Full-wavelength locally weighted partial least squares regression (LWPLSR) achieved high accuracy with the coefficient of determination in prediction (R2P) of 0.728 and root mean square error of prediction (RMSEP) of 3.802. Competitive adaptive reweighted sampling (CARS) was used to choose potential feature wavelengths, and these selected variables were further optimized using the iterative selection of successive projections algorithm (ISSPA). The CARS-ISSPA-LWPLSR model developed using 7 feature variables yielded R2P of 0.680 and RMSEP of 4.213 in DON content prediction. Based on the 7 wavelengths selected by CARS-ISSPA, partial least square discriminant analysis (PLSDA) discriminated barley kernels having lower DON (less than1.25 mg/kg) levels from those with higher levels (including 1.25–3 mg/kg, 3–5 mg/kg, and 5–10 mg/kg), with Matthews correlation coefficient in cross-validation (M-RCV) of as high as 0.931. The results demonstrate that hyperspectral imaging have potential for accelerating non-destructive DON assays of barley samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fingerprints完成签到 ,获得积分10
刚刚
1秒前
曹亚伟发布了新的文献求助10
1秒前
1秒前
YAO发布了新的文献求助10
4秒前
chen发布了新的文献求助10
4秒前
bkagyin应助杰bro采纳,获得10
4秒前
1218完成签到 ,获得积分10
7秒前
CC发布了新的文献求助10
7秒前
hongxuezhi完成签到,获得积分10
8秒前
8秒前
wQ1ng应助777采纳,获得10
10秒前
11秒前
clamon完成签到,获得积分10
12秒前
科研通AI5应助雷雷采纳,获得10
12秒前
soss完成签到,获得积分10
13秒前
Ldq发布了新的文献求助10
14秒前
mountainbike完成签到,获得积分10
15秒前
16秒前
菜鸡5号发布了新的文献求助20
17秒前
18秒前
tianyi2347发布了新的文献求助10
19秒前
陈chen发布了新的文献求助10
20秒前
闪闪书桃完成签到,获得积分10
20秒前
科研通AI5应助zzww采纳,获得10
21秒前
28秒前
纯乏完成签到,获得积分10
29秒前
小米发布了新的文献求助10
32秒前
耳东陈完成签到 ,获得积分10
32秒前
小落完成签到 ,获得积分10
33秒前
SciGPT应助HJJHJH采纳,获得10
34秒前
且欣且行完成签到 ,获得积分10
34秒前
雷雷发布了新的文献求助10
34秒前
闪亮的季节完成签到,获得积分10
34秒前
36秒前
38秒前
chen完成签到,获得积分10
39秒前
sam发布了新的文献求助10
39秒前
39秒前
39秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208961
求助须知:如何正确求助?哪些是违规求助? 4386288
关于积分的说明 13660545
捐赠科研通 4245343
什么是DOI,文献DOI怎么找? 2329238
邀请新用户注册赠送积分活动 1327077
关于科研通互助平台的介绍 1279355