IoT-Based Signal Enhancement and Compression Method for Efficient Motor Bearing Fault Diagnosis

解调 计算机科学 方位(导航) 断层(地质) 状态监测 信号(编程语言) 电子工程 工程类 电气工程 电信 人工智能 频道(广播) 地质学 地震学 程序设计语言
作者
Huasong Tang,Siliang Lu,Gang Qian,Jianming Ding,Yongbin Liu,Qunjing Wang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (2): 1820-1828 被引量:34
标识
DOI:10.1109/jsen.2020.3017768
摘要

Continuous condition monitoring and fault diagnosis of motor bearings are vital to guarantee motor safety operation and reduce breakdown losses. With numerous Internet of things (IoT) sensors being installed on motors for condition monitoring, data transmission and storage problems have become new challenges. This study designed a signal enhancement and compression (SEC) method and implemented on an IoT platform for motor bearing fault diagnosis. First, vibration signal is acquired from an accelerometer installed on the motor. The bearing signal is demodulated using an online demodulation algorithm. Second, an envelope signal is downsampled and enhanced using a stochastic resonance-based nonlinear filter. The enhanced signal is compressed using an Opus encoder and transmitted to a receiver. Lastly, the received signal is decompressed using the Opus decoder, and the bearing fault type can be recognized. The effectiveness and efficiency of the proposed SEC method are verified on an IoT platform compared with a conventional method. The proposed method improves 3.83 dB of the average signal-to-noise ratio (SNR), and reduces 94.7% of the total time and 94.6% of the dissipative power. The advantages of the proposed SEC method include high output SNR, low power consumption, and compatibility with edge computing. These advantages show potential applications in remote motor fault diagnosis using battery power supply.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
AAAA发布了新的文献求助10
3秒前
cc发布了新的文献求助10
5秒前
8秒前
lcr完成签到 ,获得积分10
10秒前
Jasper应助程昱采纳,获得10
10秒前
11秒前
科研通AI6.1应助AAAA采纳,获得10
13秒前
leona完成签到 ,获得积分10
14秒前
16秒前
赵雪莹发布了新的文献求助10
17秒前
18秒前
小小康康发布了新的文献求助10
19秒前
19秒前
寒鸦应助派大星采纳,获得50
19秒前
tianfu1899发布了新的文献求助10
21秒前
xdc发布了新的文献求助10
22秒前
111完成签到 ,获得积分10
22秒前
nana完成签到,获得积分10
23秒前
铜锣烧发布了新的文献求助10
25秒前
程昱发布了新的文献求助10
25秒前
在水一方应助tcmj采纳,获得10
25秒前
哆啦A梦完成签到,获得积分10
26秒前
Patronus完成签到,获得积分10
26秒前
茉莉完成签到 ,获得积分10
27秒前
28秒前
匿名应助科研通管家采纳,获得30
28秒前
28秒前
wanci应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
田様应助科研通管家采纳,获得10
28秒前
28秒前
天天快乐应助科研通管家采纳,获得10
28秒前
29秒前
天天快乐应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
29秒前
egg2完成签到,获得积分10
29秒前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852126
求助须知:如何正确求助?哪些是违规求助? 6276113
关于积分的说明 15627658
捐赠科研通 4968034
什么是DOI,文献DOI怎么找? 2678871
邀请新用户注册赠送积分活动 1623127
关于科研通互助平台的介绍 1579506