IoT-Based Signal Enhancement and Compression Method for Efficient Motor Bearing Fault Diagnosis

解调 计算机科学 方位(导航) 断层(地质) 状态监测 信号(编程语言) 电子工程 工程类 电气工程 电信 人工智能 频道(广播) 地质学 地震学 程序设计语言
作者
Huasong Tang,Siliang Lu,Gang Qian,Jianming Ding,Yongbin Liu,Qunjing Wang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (2): 1820-1828 被引量:34
标识
DOI:10.1109/jsen.2020.3017768
摘要

Continuous condition monitoring and fault diagnosis of motor bearings are vital to guarantee motor safety operation and reduce breakdown losses. With numerous Internet of things (IoT) sensors being installed on motors for condition monitoring, data transmission and storage problems have become new challenges. This study designed a signal enhancement and compression (SEC) method and implemented on an IoT platform for motor bearing fault diagnosis. First, vibration signal is acquired from an accelerometer installed on the motor. The bearing signal is demodulated using an online demodulation algorithm. Second, an envelope signal is downsampled and enhanced using a stochastic resonance-based nonlinear filter. The enhanced signal is compressed using an Opus encoder and transmitted to a receiver. Lastly, the received signal is decompressed using the Opus decoder, and the bearing fault type can be recognized. The effectiveness and efficiency of the proposed SEC method are verified on an IoT platform compared with a conventional method. The proposed method improves 3.83 dB of the average signal-to-noise ratio (SNR), and reduces 94.7% of the total time and 94.6% of the dissipative power. The advantages of the proposed SEC method include high output SNR, low power consumption, and compatibility with edge computing. These advantages show potential applications in remote motor fault diagnosis using battery power supply.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助嘉嘉sone采纳,获得30
1秒前
隐形的傲易完成签到 ,获得积分10
1秒前
张敏发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
xiaotianshi完成签到,获得积分20
4秒前
5秒前
6秒前
7秒前
穆千发布了新的文献求助10
9秒前
嘉嘉sone完成签到,获得积分10
10秒前
嘿嘿发布了新的文献求助10
11秒前
Muller完成签到,获得积分10
11秒前
青火完成签到,获得积分10
11秒前
12秒前
Ava应助felix采纳,获得10
12秒前
不再方里发布了新的文献求助10
12秒前
瑞一杯小黄油拿铁完成签到,获得积分10
12秒前
喻紫寒完成签到 ,获得积分10
12秒前
13秒前
sage7发布了新的文献求助10
13秒前
斯文败类应助QTQ采纳,获得30
13秒前
王富贵完成签到,获得积分10
14秒前
14秒前
哭泣觅儿完成签到,获得积分10
14秒前
lukawa完成签到,获得积分10
15秒前
嘉嘉sone发布了新的文献求助30
16秒前
16秒前
文耳东完成签到,获得积分10
17秒前
领导范儿应助落后钢铁侠采纳,获得10
17秒前
Sayhai完成签到,获得积分10
17秒前
淡淡路灯完成签到 ,获得积分20
19秒前
杨涵发布了新的文献求助10
19秒前
Jiangtao应助weixi4457采纳,获得10
20秒前
20秒前
20秒前
21秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511604
求助须知:如何正确求助?哪些是违规求助? 4606201
关于积分的说明 14498401
捐赠科研通 4541561
什么是DOI,文献DOI怎么找? 2488537
邀请新用户注册赠送积分活动 1470610
关于科研通互助平台的介绍 1442936