氮气
生物
氮气循环
微生物种群生物学
铵
土壤有机质
土壤pH值
环境化学
土壤碳
硝化作用
植物
农学
土壤水分
生态学
细菌
化学
有机化学
遗传学
作者
Wenyuan He,Mengmeng Zhang,Guangze Jin,Xin Sui,Tong Zhang,Fuqiang Song
标识
DOI:10.1007/s00248-020-01595-6
摘要
To predict the effects of nitrogen deposition on nitrogen-mineralizing enzyme activity and soil microbial community structure in artificial temperate forests in northern China, we studied the soil properties, nitrogen-mineralizing enzyme activity, and microbial community structure in the soil of a Korean pine plantation in which different concentrations (0, 20, 40, 80 kg N ha-1 year-1) of ammonium nitrate were applied for 5 consecutive years. The results showed that nitrogen addition at different concentrations did not significantly affect the soil pH. High nitrogen addition (80 kg N ha-1 year-1) significantly increased the soil organic matter, ammonium nitrogen, and nitrate nitrogen content in the Korean pine plantation, and ammonium nitrogen was the key factor that influenced the soil fungal community structure. The urease activity under the moderate nitrogen addition treatment (40 kg N ha-1 year-1) was significantly lower than that under the control (0 kg N ha-1 year-1), and the protease activity in the three treatments was also significantly lower than that in the control. There was no significant correlation between microbial community structure and the four mineralizing enzymes. After nitrogen addition at different concentrations, the Simpson and Shannon indexes of soil bacteria decreased significantly under low nitrogen addition (20 kg N ha-1 year-1), but the α-diversity index of soil fungi did not show significant differences under nitrogen addition. The microbial community composition was significantly changed by the different treatments. PLS-DA analysis showed that Tardiphaga was an important genus that made the greatest contribution to the differences in bacterial community composition among treatments, as was Taeniolella for fungal community composition. The low level of nitrogen addition inhibited nitrogen mineralization in the Korean pine plantation by reducing the relative abundances of Nitrosomonadaceae and Betaproteobacteriales and by reducing the abundances of symbiotrophic fungi. Berkelbacteria and Polyporales were bacteria and fungi, respectively, that changed significantly under the high nitrogen addition treatment (80 kg N ha-1 year-1). This study provides more data to support predictions of the changes in nitrogen-mineralizing enzyme activity and microbial community structure in artificial temperate forest soils in response to increased nitrogen deposition.
科研通智能强力驱动
Strongly Powered by AbleSci AI