糖酵解
严重肢体缺血
骨骼肌
线粒体
缺血
肌病
内科学
焊剂(冶金)
线粒体肌病
生物
内分泌学
医学
心脏病学
新陈代谢
细胞生物学
化学
生物化学
线粒体DNA
基因
血管疾病
动脉疾病
有机化学
作者
Terence E. Ryan,Cameron A. Schmidt,Michael D. Tarpey,Adam J. Amorese,Dean J. Yamaguchi,Emma J. Goldberg,Melissa R. Iñigo,Reema Karnekar,Allison R. O’Rourke,James Ervasti,Patricia Brophy,Thomas D. Green,P. Darrell Neufer,Kelsey H. Fisher‐Wellman,Espen E. Spangenburg,Joseph M. McClung
出处
期刊:JCI insight
[American Society for Clinical Investigation]
日期:2020-08-25
卷期号:5 (18)
被引量:27
标识
DOI:10.1172/jci.insight.139628
摘要
Compromised muscle mitochondrial metabolism is a hallmark of peripheral arterial disease, especially in patients with the most severe clinical manifestation — critical limb ischemia (CLI). We asked whether inflexibility in metabolism is critical for the development of myopathy in ischemic limb muscles. Using Polg mtDNA mutator (D257A) mice, we reveal remarkable protection from hind limb ischemia (HLI) due to a unique and beneficial adaptive enhancement of glycolytic metabolism and elevated ischemic muscle PFKFB3. Similar to the relationship between mitochondria from CLI and claudicating patient muscles, BALB/c muscle mitochondria are uniquely dysfunctional after HLI onset as compared with the C57BL/6 (BL6) parental strain. AAV-mediated overexpression of PFKFB3 in BALB/c limb muscles improved muscle contractile function and limb blood flow following HLI. Enrichment analysis of RNA sequencing data on muscle from CLI patients revealed a unique deficit in the glucose metabolism Reactome. Muscles from these patients express lower PFKFB3 protein, and their muscle progenitor cells possess decreased glycolytic flux capacity in vitro. Here, we show supplementary glycolytic flux as sufficient to protect against ischemic myopathy in instances where reduced blood flow–related mitochondrial function is compromised preclinically. Additionally, our data reveal reduced glycolytic flux as a common characteristic of the failing CLI patient limb skeletal muscle.
科研通智能强力驱动
Strongly Powered by AbleSci AI