Augmenting Medical Diagnosis Decisions? An Investigation into Physicians’ Decision-Making Process with Artificial Intelligence

医学诊断 建议(编程) 计算机科学 认知 心理学 认知偏差 决策支持系统 人工智能 过程(计算) 医疗决策 医学 医疗急救 精神科 操作系统 病理 程序设计语言
作者
Ekaterina Jussupow,Kai Spohrer,Armin Heinzl,Joshua Gawlitza
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
卷期号:32 (3): 713-735 被引量:199
标识
DOI:10.1287/isre.2020.0980
摘要

Systems based on artificial intelligence (AI) increasingly support physicians in diagnostic decisions, but they are not without errors and biases. Failure to detect those may result in wrong diagnoses and medical errors. Compared with rule-based systems, however, these systems are less transparent and their errors less predictable. Thus, it is difficult, yet critical, for physicians to carefully evaluate AI advice. This study uncovers the cognitive challenges that medical decision makers face when they receive potentially incorrect advice from AI-based diagnosis systems and must decide whether to follow or reject it. In experiments with 68 novice and 12 experienced physicians, novice physicians with and without clinical experience as well as experienced radiologists made more inaccurate diagnosis decisions when provided with incorrect AI advice than without advice at all. We elicit five decision-making patterns and show that wrong diagnostic decisions often result from shortcomings in utilizing metacognitions related to decision makers’ own reasoning (self-monitoring) and metacognitions related to the AI-based system (system monitoring). As a result, physicians fall for decisions based on beliefs rather than actual data or engage in unsuitably superficial evaluation of the AI advice. Our study has implications for the training of physicians and spotlights the crucial role of human actors in compensating for AI errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
孙奕完成签到,获得积分10
2秒前
2秒前
俟天晴完成签到,获得积分10
2秒前
淡定问芙发布了新的文献求助30
3秒前
5秒前
Lewis完成签到,获得积分10
6秒前
orixero应助TranYan采纳,获得10
6秒前
猪猪hero发布了新的文献求助10
8秒前
9秒前
今后应助333采纳,获得10
10秒前
pu发布了新的文献求助10
11秒前
Akim应助梓榆采纳,获得10
12秒前
劼大大完成签到,获得积分10
12秒前
最优解完成签到 ,获得积分20
13秒前
13秒前
通~发布了新的文献求助10
13秒前
一段乐多完成签到,获得积分10
14秒前
14秒前
14秒前
给我找完成签到,获得积分10
15秒前
桐桐应助Yuki0616采纳,获得10
15秒前
小马甲应助鸣隐采纳,获得10
15秒前
ycd完成签到,获得积分10
16秒前
ark861023完成签到,获得积分10
16秒前
淡定问芙完成签到,获得积分10
16秒前
斯文败类应助惠惠采纳,获得10
17秒前
17秒前
Meowly完成签到,获得积分10
17秒前
18秒前
18秒前
陶醉觅夏发布了新的文献求助10
18秒前
pu完成签到,获得积分10
18秒前
小灵通完成签到,获得积分10
18秒前
给我找发布了新的文献求助10
18秒前
科研通AI2S应助LIn采纳,获得10
19秒前
gaga完成签到,获得积分10
19秒前
_Charmo完成签到,获得积分10
19秒前
Slemon完成签到,获得积分10
19秒前
谦谦姜完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794