FedFast: Going Beyond Average for Faster Training of Federated Recommender Systems

计算机科学 水准点(测量) 推荐系统 过程(计算) 事实上 培训(气象学) 集合(抽象数据类型) 联合学习 训练集 机器学习 数据库 人工智能 多媒体 物理 大地测量学 气象学 政治学 法学 程序设计语言 地理 操作系统
作者
Khalil Muhammad,Qinqin Wang,Diarmuid O'Reilly-Morgan,Ηλίας Τράγος,Barry Smyth,Neil Hurley,James R. Geraci,Aonghus Lawlor
出处
期刊:Knowledge Discovery and Data Mining 被引量:111
标识
DOI:10.1145/3394486.3403176
摘要

Federated learning (FL) is quickly becoming the de facto standard for the distributed training of deep recommendation models, using on-device user data and reducing server costs. In a typical FL process, a central server tasks end-users to train a shared recommendation model using their local data. The local models are trained over several rounds on the users' devices and the server combines them into a global model, which is sent to the devices for the purpose of providing recommendations. Standard FL approaches use randomly selected users for training at each round, and simply average their local models to compute the global model. The resulting federated recommendation models require significant client effort to train and many communication rounds before they converge to a satisfactory accuracy. Users are left with poor quality recommendations until the late stages of training. We present a novel technique, FedFast, to accelerate distributed learning which achieves good accuracy for all users very early in the training process. We achieve this by sampling from a diverse set of participating clients in each training round and applying an active aggregation method that propagates the updated model to the other clients. Consequently, with FedFast the users benefit from far lower communication costs and more accurate models that can be consumed anytime during the training process even at the very early stages. We demonstrate the efficacy of our approach across a variety of benchmark datasets and in comparison to state-of-the-art recommendation techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
TQY发布了新的文献求助10
4秒前
刘蓓蓓发布了新的文献求助10
5秒前
善学以致用应助huohuo采纳,获得10
5秒前
不说再见完成签到,获得积分10
5秒前
zhonglv7应助喜悦白卉采纳,获得10
5秒前
6秒前
小阿博发布了新的文献求助10
6秒前
小二郎应助优雅的老姆采纳,获得10
8秒前
含蓄的卿完成签到,获得积分20
9秒前
9秒前
Gin完成签到,获得积分10
10秒前
charint发布了新的文献求助10
10秒前
iNk应助齐嘉懿采纳,获得10
12秒前
deer发布了新的文献求助10
13秒前
563998332完成签到,获得积分10
13秒前
我是老大应助强健的成协采纳,获得10
14秒前
Akim应助Skywalker采纳,获得30
14秒前
刘强完成签到,获得积分10
16秒前
20秒前
川桜完成签到,获得积分10
20秒前
cy完成签到 ,获得积分10
20秒前
辛勤的刺猬完成签到 ,获得积分10
21秒前
光亮未来完成签到,获得积分10
22秒前
Zone完成签到 ,获得积分10
22秒前
燚槿发布了新的文献求助10
23秒前
23秒前
田様应助YY采纳,获得10
24秒前
27秒前
27秒前
Richard完成签到,获得积分10
27秒前
Sunrise完成签到,获得积分10
27秒前
29秒前
aaa完成签到,获得积分10
30秒前
帅哥发布了新的文献求助10
32秒前
易方完成签到,获得积分10
32秒前
33秒前
康治喜完成签到,获得积分20
34秒前
丘比特应助163采纳,获得10
35秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288966
求助须知:如何正确求助?哪些是违规求助? 4440796
关于积分的说明 13825631
捐赠科研通 4323077
什么是DOI,文献DOI怎么找? 2372945
邀请新用户注册赠送积分活动 1368399
关于科研通互助平台的介绍 1332283