FedFast: Going Beyond Average for Faster Training of Federated Recommender Systems

计算机科学 水准点(测量) 推荐系统 过程(计算) 事实上 培训(气象学) 集合(抽象数据类型) 联合学习 训练集 机器学习 数据库 人工智能 多媒体 气象学 地理 法学 程序设计语言 大地测量学 物理 操作系统 政治学
作者
Khalil Muhammad,Qinqin Wang,Diarmuid O'Reilly-Morgan,Ηλίας Τράγος,Barry Smyth,Neil Hurley,James R. Geraci,Aonghus Lawlor
出处
期刊:Knowledge Discovery and Data Mining 被引量:111
标识
DOI:10.1145/3394486.3403176
摘要

Federated learning (FL) is quickly becoming the de facto standard for the distributed training of deep recommendation models, using on-device user data and reducing server costs. In a typical FL process, a central server tasks end-users to train a shared recommendation model using their local data. The local models are trained over several rounds on the users' devices and the server combines them into a global model, which is sent to the devices for the purpose of providing recommendations. Standard FL approaches use randomly selected users for training at each round, and simply average their local models to compute the global model. The resulting federated recommendation models require significant client effort to train and many communication rounds before they converge to a satisfactory accuracy. Users are left with poor quality recommendations until the late stages of training. We present a novel technique, FedFast, to accelerate distributed learning which achieves good accuracy for all users very early in the training process. We achieve this by sampling from a diverse set of participating clients in each training round and applying an active aggregation method that propagates the updated model to the other clients. Consequently, with FedFast the users benefit from far lower communication costs and more accurate models that can be consumed anytime during the training process even at the very early stages. We demonstrate the efficacy of our approach across a variety of benchmark datasets and in comparison to state-of-the-art recommendation techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲的自行车完成签到,获得积分20
刚刚
小二郎应助小何采纳,获得10
刚刚
1秒前
chen发布了新的文献求助10
1秒前
顾矜应助对对碰采纳,获得10
2秒前
鱿鱼发布了新的文献求助10
2秒前
夜未央发布了新的文献求助10
3秒前
3秒前
ww关注了科研通微信公众号
3秒前
失眠的耳机完成签到,获得积分10
4秒前
5秒前
5秒前
syy080837发布了新的文献求助10
5秒前
Akim应助iwonder采纳,获得10
5秒前
5秒前
5秒前
所所应助冷傲的自行车采纳,获得30
6秒前
Lee发布了新的文献求助10
7秒前
yuliuism应助Dasph7采纳,获得20
7秒前
7秒前
倒逆之蝶应助科研通管家采纳,获得10
8秒前
倒逆之蝶应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
zgrmws应助科研通管家采纳,获得10
8秒前
tcf应助科研通管家采纳,获得10
8秒前
紫气东来应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
PPP完成签到,获得积分0
8秒前
紫气东来应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
zgrmws应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
一只吉蛋发布了新的文献求助10
9秒前
niNe3YUE应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
你好包包完成签到,获得积分10
9秒前
公龟应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660573
求助须知:如何正确求助?哪些是违规求助? 4834676
关于积分的说明 15091117
捐赠科研通 4819141
什么是DOI,文献DOI怎么找? 2579102
邀请新用户注册赠送积分活动 1533630
关于科研通互助平台的介绍 1492396