FedFast: Going Beyond Average for Faster Training of Federated Recommender Systems

计算机科学 水准点(测量) 推荐系统 过程(计算) 事实上 培训(气象学) 集合(抽象数据类型) 联合学习 训练集 机器学习 数据库 人工智能 多媒体 物理 大地测量学 气象学 政治学 法学 程序设计语言 地理 操作系统
作者
Khalil Muhammad,Qinqin Wang,Diarmuid O'Reilly-Morgan,Ηλίας Τράγος,Barry Smyth,Neil Hurley,James R. Geraci,Aonghus Lawlor
出处
期刊:Knowledge Discovery and Data Mining 被引量:111
标识
DOI:10.1145/3394486.3403176
摘要

Federated learning (FL) is quickly becoming the de facto standard for the distributed training of deep recommendation models, using on-device user data and reducing server costs. In a typical FL process, a central server tasks end-users to train a shared recommendation model using their local data. The local models are trained over several rounds on the users' devices and the server combines them into a global model, which is sent to the devices for the purpose of providing recommendations. Standard FL approaches use randomly selected users for training at each round, and simply average their local models to compute the global model. The resulting federated recommendation models require significant client effort to train and many communication rounds before they converge to a satisfactory accuracy. Users are left with poor quality recommendations until the late stages of training. We present a novel technique, FedFast, to accelerate distributed learning which achieves good accuracy for all users very early in the training process. We achieve this by sampling from a diverse set of participating clients in each training round and applying an active aggregation method that propagates the updated model to the other clients. Consequently, with FedFast the users benefit from far lower communication costs and more accurate models that can be consumed anytime during the training process even at the very early stages. We demonstrate the efficacy of our approach across a variety of benchmark datasets and in comparison to state-of-the-art recommendation techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
没有昵称完成签到,获得积分10
刚刚
大方小松完成签到,获得积分10
刚刚
王山完成签到,获得积分10
1秒前
majf发布了新的文献求助10
1秒前
2秒前
voifhpg发布了新的文献求助10
2秒前
杉杉完成签到,获得积分10
3秒前
你在叫什么完成签到,获得积分10
4秒前
隐形元彤完成签到 ,获得积分10
4秒前
jinyu发布了新的文献求助10
5秒前
niceweiwei完成签到 ,获得积分10
5秒前
6秒前
无情白羊完成签到,获得积分10
6秒前
6秒前
TAO关闭了TAO文献求助
6秒前
UUU完成签到 ,获得积分10
7秒前
雪原白鹿完成签到,获得积分10
7秒前
研友_VZG7GZ应助甜蜜雪柳采纳,获得10
7秒前
orixero应助小吴采纳,获得10
8秒前
8秒前
9秒前
三三磊完成签到,获得积分10
9秒前
phy完成签到,获得积分10
9秒前
谜记完成签到,获得积分10
10秒前
10秒前
Gao发布了新的文献求助10
10秒前
10秒前
细腻的青柏完成签到,获得积分10
11秒前
不慌不慌完成签到,获得积分10
11秒前
Connor完成签到,获得积分10
12秒前
曹国庆完成签到 ,获得积分10
12秒前
hkh发布了新的文献求助10
13秒前
空城完成签到,获得积分10
13秒前
少吃一口完成签到,获得积分10
13秒前
MR完成签到,获得积分10
13秒前
zc98发布了新的文献求助10
13秒前
gty完成签到,获得积分10
14秒前
14秒前
今后应助优雅战斗机采纳,获得10
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495487
关于积分的说明 11077296
捐赠科研通 3226021
什么是DOI,文献DOI怎么找? 1783386
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800855