NeuroCS: A Tool to Predict Cleavage Sites of Neuropeptide Precursors

神经肽 特征选择 计算机科学 神经肽Y受体 劈理(地质) 特征提取 特征(语言学) 人工智能 数据挖掘 机器学习 化学 生物 生物化学 哲学 古生物学 受体 断裂(地质) 语言学
作者
Ying Wang,Jisoo Kang,Ning Li,Yuwei Zhou,Zhongjie Tang,Bifang He,Jian Huang
出处
期刊:Protein and Peptide Letters [Bentham Science]
被引量:2
标识
DOI:10.2174/0929866526666191112150636
摘要

Background: Neuropeptides are a class of bioactive peptides produced from neuropeptide precursors through a series of extremely complex processes, mediating neuronal regulations in many aspects. Accurate identification of cleavage sites of neuropeptide precursors is of great significance for the development of neuroscience and brain science. Objective: With the explosive growth of neuropeptide precursor data, it is pretty much needed to develop bioinformatics methods for predicting neuropeptide precursors’ cleavage sites quickly and efficiently. Method : We started with processing the neuropeptide precursor data from SwissProt and NueoPedia into two sets of data, training dataset and testing dataset. Subsequently, six feature extraction schemes were applied to generate different feature sets and then feature selection methods were used to find the optimal feature subset of each. Thereafter the support vector machine was utilized to build models for different feature types. Finally, the performance of models were evaluated with the independent testing dataset. Results: Six models are built through support vector machine. Among them the enhanced amino acid composition-based model reaches the highest accuracy of 91.60% in the 5-fold cross validation. When evaluated with independent testing dataset, it also showed an excellent performance with a high accuracy of 90.37% and Area under Receiver Operating Characteristic curve up to 0.9576. Conclusion: The performance of the developed model was decent. Moreover, for users’ convenience, an online web server called NeuroCS is built, which is freely available at http://i.uestc.edu.cn/NeuroCS/dist/index.html#/. NeuroCS can be used to predict neuropeptide precursors’ cleavage sites effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dw发布了新的文献求助10
1秒前
蔺不平发布了新的文献求助10
1秒前
川上富江发布了新的文献求助10
2秒前
3秒前
加菲丰丰应助xiao采纳,获得20
3秒前
Shine完成签到 ,获得积分10
3秒前
陈军应助帅气的小兔子采纳,获得20
4秒前
4秒前
...发布了新的文献求助10
5秒前
无花果应助小许采纳,获得10
5秒前
5秒前
5秒前
5秒前
7秒前
蔺不平完成签到,获得积分10
7秒前
灯火完成签到,获得积分10
7秒前
tfldog发布了新的文献求助10
7秒前
可爱的函函应助pinging采纳,获得10
7秒前
conan发布了新的文献求助10
8秒前
dw完成签到,获得积分10
8秒前
自由过客发布了新的文献求助10
8秒前
9秒前
积极孤菱发布了新的文献求助10
10秒前
Heidi完成签到,获得积分10
10秒前
我是老大应助川上富江采纳,获得10
10秒前
11秒前
lingling发布了新的文献求助10
11秒前
Puokn发布了新的文献求助10
11秒前
安详的蜜粉完成签到,获得积分10
11秒前
shen发布了新的文献求助10
12秒前
可爱的函函应助zwhy采纳,获得10
12秒前
13秒前
13秒前
MM完成签到,获得积分10
13秒前
棉花糖完成签到 ,获得积分10
14秒前
Herman_Chen完成签到,获得积分10
14秒前
小白发布了新的文献求助10
15秒前
15秒前
充电宝应助zzzzzz采纳,获得10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148993
求助须知:如何正确求助?哪些是违规求助? 2800076
关于积分的说明 7838336
捐赠科研通 2457543
什么是DOI,文献DOI怎么找? 1307913
科研通“疑难数据库(出版商)”最低求助积分说明 628328
版权声明 601685