STAR: Spatio-Temporal Taxonomy-Aware Tag Recommendation for Citizen Complaints

计算机科学 推荐系统 分类学(生物学) 情报检索 鉴定(生物学) 人工智能 万维网
作者
Jingyue Gao,Yuanduo He,Yasha Wang,Xiting Wang,Jiangtao Wang,Guangju Peng,Xu Chu
出处
期刊:Conference on Information and Knowledge Management 卷期号:: 1903-1912 被引量:5
标识
DOI:10.1145/3357384.3357894
摘要

In modern cities, complaining has become an important way for citizens to report emerging urban issues to governments for quick response. For ease of retrieval and handling, government officials usually organize citizen complaints by manually assigning tags to them, which is inefficient and cannot always guarantee the quality of assigned tags. This work attempts to solve this problem by recommending tags for citizen complaints. Although there exist many studies on tag recommendation for textual content, few of them consider two characteristics of citizen complaints, i.e., the spatio-temporal correlations and the taxonomy of candidate tags. In this paper, we propose a novel Spatio-Temporal Taxonomy-Aware Recommendation model (STAR), to recommend tags for citizen complaints by jointly incorporating spatio-temporal information of complaints and the taxonomy of candidate tags. Specifically, STAR first exploits two parallel channels to learn representations for textual and spatio-temporal information. To effectively leverage the taxonomy of tags, we design chained neural networks that gradually refine the representations and perform hierarchical recommendation under a novel taxonomy constraint. A fusion module is further proposed to adaptively integrate contributions of textual and spatio-temporal information in a tag-specific manner. We conduct extensive experiments on a real-world dataset and demonstrate that STAR significantly performs better than state-of-the-art methods. The effectiveness of key components in our model is also verified through ablation studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxdfrank完成签到,获得积分10
1秒前
1秒前
幽默建辉发布了新的文献求助10
1秒前
3秒前
夏沫樱花雨完成签到,获得积分10
3秒前
江河湖海发布了新的文献求助10
4秒前
从容的巧曼完成签到 ,获得积分10
4秒前
大根度几张完成签到,获得积分10
5秒前
zhuzhu发布了新的文献求助10
7秒前
serein发布了新的文献求助10
7秒前
zxy应助江离采纳,获得10
9秒前
幽默建辉完成签到,获得积分10
9秒前
科研通AI2S应助yy采纳,获得10
10秒前
smlij616完成签到 ,获得积分10
11秒前
11秒前
myyy完成签到 ,获得积分10
12秒前
12秒前
13秒前
余弦关注了科研通微信公众号
14秒前
毛豆应助徐per爱豆采纳,获得10
15秒前
扣子发布了新的文献求助10
15秒前
温柔发布了新的文献求助10
16秒前
天天完成签到,获得积分10
17秒前
小虎发布了新的文献求助30
17秒前
filter完成签到,获得积分10
20秒前
毛豆应助小孙采纳,获得10
20秒前
葳葳完成签到,获得积分10
20秒前
传奇3应助斑ban采纳,获得30
21秒前
完美的仙人掌完成签到,获得积分10
22秒前
善学以致用应助马佳凯采纳,获得10
22秒前
欢呼洋葱应助baiabi采纳,获得10
23秒前
科研通AI2S应助温柔采纳,获得10
23秒前
小虎完成签到,获得积分10
25秒前
26秒前
英俊的迎波关注了科研通微信公众号
28秒前
vagrant1131完成签到,获得积分10
29秒前
圆圆发布了新的文献求助10
29秒前
zxcsdfa应助哈登采纳,获得10
29秒前
29秒前
余弦发布了新的文献求助10
31秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463232
求助须知:如何正确求助?哪些是违规求助? 3056669
关于积分的说明 9053216
捐赠科研通 2746523
什么是DOI,文献DOI怎么找? 1506979
科研通“疑难数据库(出版商)”最低求助积分说明 696248
邀请新用户注册赠送积分活动 695849