SeedGerm: a cost‐effective phenotyping platform for automated seed imaging and machine‐learning based phenotypic analysis of crop seed germination

发芽 胚根 生物 作物 农学 脱落酸 机器学习 人工智能 计算机科学 生物化学 基因
作者
Joshua Colmer,Carmel M. O’Neill,Rachel Wells,Aaron Bostrom,Daniel Reynolds,Danny Websdale,Gagan Shiralagi,Lu Wei,Qiaojun Lou,Thomas Le Cornu,Joshua Ball,Jim Renema,Gema Flores Andaluz,René Benjamins,Steven Penfield,Ji Zhou
出处
期刊:New Phytologist [Wiley]
卷期号:228 (2): 778-793 被引量:86
标识
DOI:10.1111/nph.16736
摘要

Summary Efficient seed germination and establishment are important traits for field and glasshouse crops. Large‐scale germination experiments are laborious and prone to observer errors, leading to the necessity for automated methods. We experimented with five crop species, including tomato, pepper, Brassica, barley, and maize, and concluded an approach for large‐scale germination scoring. Here, we present the SeedGerm system, which combines cost‐effective hardware and open‐source software for seed germination experiments, automated seed imaging, and machine‐learning based phenotypic analysis. The software can process multiple image series simultaneously and produce reliable analysis of germination‐ and establishment‐related traits, in both comma‐separated values (CSV) and processed images (PNG) formats. In this article, we describe the hardware and software design in detail. We also demonstrate that SeedGerm could match specialists’ scoring of radicle emergence. Germination curves were produced based on seed‐level germination timing and rates rather than a fitted curve. In particular, by scoring germination across a diverse panel of Brassica napus varieties, SeedGerm implicates a gene important in abscisic acid (ABA) signalling in seeds. We compared SeedGerm with existing methods and concluded that it could have wide utilities in large‐scale seed phenotyping and testing, for both research and routine seed technology applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
可爱的函函应助chant采纳,获得10
2秒前
3秒前
爱笑蛋挞完成签到 ,获得积分10
3秒前
kjj发布了新的文献求助100
4秒前
John发布了新的文献求助10
4秒前
skkr发布了新的文献求助30
4秒前
5秒前
6秒前
Bighen完成签到 ,获得积分10
8秒前
8秒前
拓跋涵易发布了新的文献求助10
9秒前
10秒前
所所应助skkr采纳,获得10
11秒前
驿寄梅花发布了新的文献求助10
11秒前
12秒前
传奇3应助哎呀妈呀采纳,获得10
13秒前
17秒前
SciGPT应助waws采纳,获得10
17秒前
mouxq发布了新的文献求助10
18秒前
19秒前
19秒前
驿寄梅花完成签到,获得积分10
20秒前
20秒前
20秒前
21秒前
21秒前
哎呀妈呀发布了新的文献求助10
22秒前
auguste发布了新的文献求助10
23秒前
11完成签到,获得积分20
24秒前
一笑倾城发布了新的文献求助10
26秒前
zho发布了新的文献求助10
26秒前
27秒前
自渡发布了新的文献求助10
27秒前
yoyo完成签到,获得积分10
28秒前
IKUN发布了新的文献求助20
29秒前
yyy完成签到 ,获得积分10
29秒前
11发布了新的文献求助10
29秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
Jasper应助科研通管家采纳,获得10
30秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248513
求助须知:如何正确求助?哪些是违规求助? 2891903
关于积分的说明 8269128
捐赠科研通 2559920
什么是DOI,文献DOI怎么找? 1388768
科研通“疑难数据库(出版商)”最低求助积分说明 650897
邀请新用户注册赠送积分活动 627798