Deep Learning-Based Wrapped Phase Denoising Method for Application in Digital Holographic Speckle Pattern Interferometry

散斑噪声 斑点图案 电子散斑干涉技术 数字全息术 人工智能 降噪 计算机科学 全息干涉法 计算机视觉 干涉测量 全息术 噪音(视频) 光学 相(物质) 图像(数学) 物理 量子力学
作者
Kun Yan,Lin Chang,Michalis Andrianakis,Vivi Tornari,Yingjie Yu
出处
期刊:Applied sciences [MDPI AG]
卷期号:10 (11): 4044-4044 被引量:30
标识
DOI:10.3390/app10114044
摘要

This paper presents a new processing method for denoising interferograms obtained by digital holographic speckle pattern interferometry (DHSPI) to serve in the structural diagnosis of artworks. DHSPI is a non-destructive and non-contact imaging method that has been successfully applied to the structural diagnosis of artworks by detecting hidden subsurface defects and quantifying the deformation directly from the surface illuminated by coherent light. The spatial information of structural defects is mostly delivered as local distortions interrupting the smooth distribution of intensity during the phase-shifted formation of fringe patterns. Distortions in fringe patterns are recorded and observed from the estimated wrapped phase map, but the inevitable electronic speckle noise directly affects the quality of the image and consequently the assessment of defects. An effective method for denoising DHSPI wrapped phase based on deep learning is presented in this paper. Although a related method applied to interferometry for reducing Gaussian noise has been introduced, it is not suitable for application in DHSPI to reduce speckle noise. Thus, the paper proposes a new method to remove speckle noise in the wrapped phase. Simulated data and experimental captured data from samples prove that the proposed method can effectively reduce the speckle noise of the DHSPI wrapped phase to extract the desired information. The proposed method is helpful for accurately detecting defects in complex defect topography maps and may help to accelerate defect detection and characterization procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落寞蓝天发布了新的文献求助10
2秒前
勤奋的热狗完成签到 ,获得积分10
5秒前
happy完成签到,获得积分10
7秒前
10秒前
宜醉宜游宜睡应助lanbing802采纳,获得10
10秒前
11秒前
宣洋发布了新的文献求助10
14秒前
托塔小姐完成签到,获得积分10
14秒前
在水一方应助清脆的丹南采纳,获得10
16秒前
余琳发布了新的文献求助10
16秒前
18秒前
旧梦发布了新的文献求助10
19秒前
22秒前
清脆的丹南完成签到,获得积分10
22秒前
24秒前
ywq发布了新的文献求助10
24秒前
25秒前
宣洋完成签到,获得积分20
25秒前
25秒前
wllllll发布了新的文献求助20
27秒前
28秒前
坚强的虔发布了新的文献求助10
29秒前
30秒前
lk完成签到,获得积分10
30秒前
秋雅发布了新的文献求助10
30秒前
你的益达ymh完成签到,获得积分10
30秒前
31秒前
科研通AI2S应助wisteety采纳,获得10
31秒前
海洋完成签到,获得积分20
32秒前
32秒前
ossantu发布了新的文献求助10
32秒前
33秒前
余琳完成签到,获得积分10
34秒前
阔达蓝血发布了新的文献求助10
34秒前
彭于晏应助旧梦采纳,获得10
34秒前
Erich发布了新的文献求助10
36秒前
廉锦枫发布了新的文献求助10
37秒前
海洋发布了新的文献求助10
37秒前
39秒前
39秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161053
求助须知:如何正确求助?哪些是违规求助? 2812453
关于积分的说明 7895410
捐赠科研通 2471252
什么是DOI,文献DOI怎么找? 1315934
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602094