Deep Learning-Based Wrapped Phase Denoising Method for Application in Digital Holographic Speckle Pattern Interferometry

散斑噪声 斑点图案 电子散斑干涉技术 数字全息术 人工智能 降噪 计算机科学 全息干涉法 计算机视觉 干涉测量 全息术 噪音(视频) 光学 相(物质) 图像(数学) 物理 量子力学
作者
Kun Yan,Lin Chang,Michalis Andrianakis,Vivi Tornari,Yingjie Yu
出处
期刊:Applied sciences [MDPI AG]
卷期号:10 (11): 4044-4044 被引量:30
标识
DOI:10.3390/app10114044
摘要

This paper presents a new processing method for denoising interferograms obtained by digital holographic speckle pattern interferometry (DHSPI) to serve in the structural diagnosis of artworks. DHSPI is a non-destructive and non-contact imaging method that has been successfully applied to the structural diagnosis of artworks by detecting hidden subsurface defects and quantifying the deformation directly from the surface illuminated by coherent light. The spatial information of structural defects is mostly delivered as local distortions interrupting the smooth distribution of intensity during the phase-shifted formation of fringe patterns. Distortions in fringe patterns are recorded and observed from the estimated wrapped phase map, but the inevitable electronic speckle noise directly affects the quality of the image and consequently the assessment of defects. An effective method for denoising DHSPI wrapped phase based on deep learning is presented in this paper. Although a related method applied to interferometry for reducing Gaussian noise has been introduced, it is not suitable for application in DHSPI to reduce speckle noise. Thus, the paper proposes a new method to remove speckle noise in the wrapped phase. Simulated data and experimental captured data from samples prove that the proposed method can effectively reduce the speckle noise of the DHSPI wrapped phase to extract the desired information. The proposed method is helpful for accurately detecting defects in complex defect topography maps and may help to accelerate defect detection and characterization procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愤怒的小鸽子完成签到,获得积分10
刚刚
zinc完成签到,获得积分10
1秒前
JamesPei应助霸气的玉兰采纳,获得10
1秒前
danli发布了新的文献求助10
1秒前
洋洋羊发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
yyy完成签到,获得积分10
4秒前
zinc发布了新的文献求助10
4秒前
英勇乾完成签到,获得积分10
4秒前
科研通AI6应助鸭梨采纳,获得10
4秒前
6秒前
bmhs2017应助KerwinLLL采纳,获得10
6秒前
浮游应助我想裸奔采纳,获得10
6秒前
喜悦的绮露完成签到,获得积分10
6秒前
6秒前
harrision完成签到,获得积分10
7秒前
9秒前
11秒前
11秒前
rrrrrr完成签到,获得积分10
11秒前
11秒前
Jasper应助TT采纳,获得10
11秒前
浮游应助王易云采纳,获得10
12秒前
加菲丰丰举报求助违规成功
12秒前
whatever举报求助违规成功
12秒前
ghost举报求助违规成功
12秒前
12秒前
evenz2001完成签到,获得积分10
15秒前
16秒前
乐乐应助威武的天德采纳,获得10
17秒前
zzy发布了新的文献求助10
17秒前
CheeseD发布了新的文献求助10
17秒前
Lucas应助lqz07采纳,获得10
17秒前
赘婿应助张欢欢采纳,获得10
17秒前
19秒前
19秒前
avalanche应助甜甜的盼海采纳,获得30
21秒前
xiangxiang完成签到,获得积分10
21秒前
liuxl完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5417068
求助须知:如何正确求助?哪些是违规求助? 4533127
关于积分的说明 14138228
捐赠科研通 4449179
什么是DOI,文献DOI怎么找? 2440630
邀请新用户注册赠送积分活动 1432456
关于科研通互助平台的介绍 1409858