Deep Learning-Based Wrapped Phase Denoising Method for Application in Digital Holographic Speckle Pattern Interferometry

散斑噪声 斑点图案 电子散斑干涉技术 数字全息术 人工智能 降噪 计算机科学 全息干涉法 计算机视觉 干涉测量 全息术 噪音(视频) 光学 相(物质) 图像(数学) 物理 量子力学
作者
Kun Yan,Lin Chang,Michalis Andrianakis,Vivi Tornari,Yingjie Yu
出处
期刊:Applied sciences [MDPI AG]
卷期号:10 (11): 4044-4044 被引量:30
标识
DOI:10.3390/app10114044
摘要

This paper presents a new processing method for denoising interferograms obtained by digital holographic speckle pattern interferometry (DHSPI) to serve in the structural diagnosis of artworks. DHSPI is a non-destructive and non-contact imaging method that has been successfully applied to the structural diagnosis of artworks by detecting hidden subsurface defects and quantifying the deformation directly from the surface illuminated by coherent light. The spatial information of structural defects is mostly delivered as local distortions interrupting the smooth distribution of intensity during the phase-shifted formation of fringe patterns. Distortions in fringe patterns are recorded and observed from the estimated wrapped phase map, but the inevitable electronic speckle noise directly affects the quality of the image and consequently the assessment of defects. An effective method for denoising DHSPI wrapped phase based on deep learning is presented in this paper. Although a related method applied to interferometry for reducing Gaussian noise has been introduced, it is not suitable for application in DHSPI to reduce speckle noise. Thus, the paper proposes a new method to remove speckle noise in the wrapped phase. Simulated data and experimental captured data from samples prove that the proposed method can effectively reduce the speckle noise of the DHSPI wrapped phase to extract the desired information. The proposed method is helpful for accurately detecting defects in complex defect topography maps and may help to accelerate defect detection and characterization procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗨喽完成签到,获得积分10
刚刚
活泼蜡烛完成签到,获得积分10
刚刚
叶落孤城完成签到,获得积分10
刚刚
woshiwuziq完成签到 ,获得积分10
刚刚
沐沐汐完成签到 ,获得积分10
1秒前
Akim应助文献狂人采纳,获得10
1秒前
YeMa发布了新的文献求助10
2秒前
shea发布了新的文献求助10
2秒前
自觉一曲发布了新的文献求助10
3秒前
3秒前
慕青应助lling采纳,获得10
3秒前
foxbt完成签到,获得积分10
3秒前
4秒前
夏秀鑫完成签到,获得积分10
4秒前
123完成签到,获得积分10
4秒前
奋斗的大白菜完成签到,获得积分10
5秒前
熊儒恒完成签到,获得积分10
5秒前
5秒前
白江虎发布了新的文献求助10
6秒前
笑点低的凉面完成签到,获得积分10
6秒前
Huzhu应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
多边形完成签到 ,获得积分10
7秒前
头哥应助科研通管家采纳,获得10
7秒前
7秒前
Rookie应助科研通管家采纳,获得10
7秒前
Wefaily应助科研通管家采纳,获得50
7秒前
7秒前
南宫应助科研通管家采纳,获得10
7秒前
7秒前
Owen应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482803
求助须知:如何正确求助?哪些是违规求助? 4583511
关于积分的说明 14390213
捐赠科研通 4512809
什么是DOI,文献DOI怎么找? 2473255
邀请新用户注册赠送积分活动 1459255
关于科研通互助平台的介绍 1432883