已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning-Based Wrapped Phase Denoising Method for Application in Digital Holographic Speckle Pattern Interferometry

散斑噪声 斑点图案 电子散斑干涉技术 数字全息术 人工智能 降噪 计算机科学 全息干涉法 计算机视觉 干涉测量 全息术 噪音(视频) 光学 相(物质) 图像(数学) 物理 量子力学
作者
Kun Yan,Lin Chang,Michalis Andrianakis,Vivi Tornari,Yingjie Yu
出处
期刊:Applied sciences [MDPI AG]
卷期号:10 (11): 4044-4044 被引量:30
标识
DOI:10.3390/app10114044
摘要

This paper presents a new processing method for denoising interferograms obtained by digital holographic speckle pattern interferometry (DHSPI) to serve in the structural diagnosis of artworks. DHSPI is a non-destructive and non-contact imaging method that has been successfully applied to the structural diagnosis of artworks by detecting hidden subsurface defects and quantifying the deformation directly from the surface illuminated by coherent light. The spatial information of structural defects is mostly delivered as local distortions interrupting the smooth distribution of intensity during the phase-shifted formation of fringe patterns. Distortions in fringe patterns are recorded and observed from the estimated wrapped phase map, but the inevitable electronic speckle noise directly affects the quality of the image and consequently the assessment of defects. An effective method for denoising DHSPI wrapped phase based on deep learning is presented in this paper. Although a related method applied to interferometry for reducing Gaussian noise has been introduced, it is not suitable for application in DHSPI to reduce speckle noise. Thus, the paper proposes a new method to remove speckle noise in the wrapped phase. Simulated data and experimental captured data from samples prove that the proposed method can effectively reduce the speckle noise of the DHSPI wrapped phase to extract the desired information. The proposed method is helpful for accurately detecting defects in complex defect topography maps and may help to accelerate defect detection and characterization procedures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
笨笨完成签到,获得积分10
4秒前
果冻橙完成签到,获得积分10
5秒前
情怀应助ceeray23采纳,获得20
5秒前
Forever完成签到 ,获得积分10
6秒前
7秒前
程小柒完成签到 ,获得积分10
7秒前
chenchen发布了新的文献求助10
9秒前
YifanWang应助YangHuilin采纳,获得30
10秒前
康斯坦丁发布了新的文献求助10
11秒前
燕燕完成签到 ,获得积分10
12秒前
学者风范完成签到 ,获得积分10
13秒前
adu发布了新的文献求助10
13秒前
16秒前
吴开珍完成签到 ,获得积分10
19秒前
七叶花开完成签到 ,获得积分10
19秒前
达雨发布了新的文献求助10
19秒前
淡淡一德完成签到 ,获得积分10
20秒前
菠萝完成签到,获得积分20
21秒前
小马甲应助墨痕采纳,获得10
22秒前
Criminology34举报wtx19980528求助涉嫌违规
23秒前
lin完成签到 ,获得积分10
25秒前
25秒前
正己烷完成签到 ,获得积分10
26秒前
冬日空虚完成签到,获得积分20
26秒前
蛋堡完成签到 ,获得积分10
27秒前
可爱邓邓完成签到 ,获得积分10
29秒前
29秒前
三千完成签到,获得积分10
30秒前
qaxt完成签到,获得积分10
30秒前
菠萝发布了新的文献求助10
33秒前
春鸮鸟完成签到 ,获得积分10
34秒前
AixLeft完成签到 ,获得积分10
34秒前
Zaf完成签到,获得积分20
35秒前
35秒前
36秒前
鞑靼完成签到 ,获得积分10
37秒前
39秒前
chenchen发布了新的文献求助10
40秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584496
求助须知:如何正确求助?哪些是违规求助? 4668199
关于积分的说明 14770858
捐赠科研通 4610653
什么是DOI,文献DOI怎么找? 2529911
邀请新用户注册赠送积分活动 1498856
关于科研通互助平台的介绍 1467394