Deep Learning-Based Wrapped Phase Denoising Method for Application in Digital Holographic Speckle Pattern Interferometry

散斑噪声 斑点图案 电子散斑干涉技术 数字全息术 人工智能 降噪 计算机科学 全息干涉法 计算机视觉 干涉测量 全息术 噪音(视频) 光学 相(物质) 图像(数学) 物理 量子力学
作者
Kun Yan,Lin Chang,Michalis Andrianakis,Vivi Tornari,Yingjie Yu
出处
期刊:Applied sciences [MDPI AG]
卷期号:10 (11): 4044-4044 被引量:30
标识
DOI:10.3390/app10114044
摘要

This paper presents a new processing method for denoising interferograms obtained by digital holographic speckle pattern interferometry (DHSPI) to serve in the structural diagnosis of artworks. DHSPI is a non-destructive and non-contact imaging method that has been successfully applied to the structural diagnosis of artworks by detecting hidden subsurface defects and quantifying the deformation directly from the surface illuminated by coherent light. The spatial information of structural defects is mostly delivered as local distortions interrupting the smooth distribution of intensity during the phase-shifted formation of fringe patterns. Distortions in fringe patterns are recorded and observed from the estimated wrapped phase map, but the inevitable electronic speckle noise directly affects the quality of the image and consequently the assessment of defects. An effective method for denoising DHSPI wrapped phase based on deep learning is presented in this paper. Although a related method applied to interferometry for reducing Gaussian noise has been introduced, it is not suitable for application in DHSPI to reduce speckle noise. Thus, the paper proposes a new method to remove speckle noise in the wrapped phase. Simulated data and experimental captured data from samples prove that the proposed method can effectively reduce the speckle noise of the DHSPI wrapped phase to extract the desired information. The proposed method is helpful for accurately detecting defects in complex defect topography maps and may help to accelerate defect detection and characterization procedures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZeKaWa应助长理物电强采纳,获得10
7秒前
Michael完成签到 ,获得积分10
8秒前
十四班副班长应助清风采纳,获得10
9秒前
hh发布了新的文献求助10
10秒前
dada完成签到,获得积分10
17秒前
倾城完成签到,获得积分10
18秒前
20秒前
didi发布了新的文献求助10
21秒前
俭朴听双完成签到,获得积分10
22秒前
xxx完成签到 ,获得积分10
22秒前
dong发布了新的文献求助10
23秒前
24秒前
子春末发布了新的文献求助10
26秒前
LiWeipeng完成签到,获得积分10
33秒前
泡芙发布了新的文献求助10
37秒前
哈哈哈哈完成签到 ,获得积分10
37秒前
浮游应助dong采纳,获得10
39秒前
不懂QM的薛定谔猫完成签到,获得积分10
42秒前
KBRS完成签到 ,获得积分10
43秒前
44秒前
48秒前
pliciyir发布了新的文献求助10
49秒前
halona完成签到,获得积分10
49秒前
50秒前
liaoxinghui完成签到,获得积分20
51秒前
刘Liam完成签到 ,获得积分10
54秒前
李健的小迷弟应助glay采纳,获得10
54秒前
hy发布了新的文献求助10
55秒前
liaoxinghui发布了新的文献求助10
55秒前
凉兮发布了新的文献求助30
56秒前
泡芙完成签到,获得积分10
58秒前
58秒前
222完成签到,获得积分10
59秒前
59秒前
hh完成签到,获得积分10
1分钟前
却之不恭6253完成签到,获得积分10
1分钟前
凉兮完成签到,获得积分10
1分钟前
222发布了新的文献求助10
1分钟前
palace完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645588
关于积分的说明 14675693
捐赠科研通 4586757
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460969