亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

State-of-Charge Estimation of Li-Ion Battery in Electric Vehicles: A Deep Neural Network Approach

荷电状态 电池(电) 人工神经网络 试验台 计算机科学 工程类 人工智能 嵌入式系统 功率(物理) 量子力学 物理
作者
D. N. T. How,M. A. Hannan,Molla Shahadat Hossain Lipu,Khairul Salleh Mohamed Sahari,Pin Jern Ker,Kashem M. Muttaqi
出处
期刊:IEEE Transactions on Industry Applications [Institute of Electrical and Electronics Engineers]
卷期号:56 (5): 5565-5574 被引量:163
标识
DOI:10.1109/tia.2020.3004294
摘要

The state of charge (SOC) is a crucial parameter of a battery management system for Li-ion batteries. The SOC indicates the amount of charge left in the battery of electric vehicles-akin to the fuel gauge in combustion vehicles. An accurate SOC knowledge contributes largely to the longevity, performance, and reliability of the battery. However, the SOC of Li-ion batteries cannot be easily measured by any apparatus. Furthermore, the SOC can also be influenced by numerous incalculable factors such as battery chemistry, ambient environment, aging factor, etc. In this article, we propose an SOC estimation model for a Li-ion battery using an improved deep neural network (DNN) approach for electric vehicle applications. We found that a DNN with a sufficient number of hidden layers is capable of predicting the SOC of the unseen drive cycles during training. We developed a series of DNN models with a varying number of hidden layers, and its training algorithm was to investigate their respective performance when evaluated on different drive cycles. We observe that the increasing number of hidden layers in the DNN (up to four hidden layers) decreases the error rate and improves SOC estimation. An additional increase in the number of hidden layers beyond that increases the error rate. In this study, we show that a four-hidden-layer DNN trained on Dynamic Stress Test drive cycle is capable of predicting SOC values unexpectedly well of other unseen drive cycles such as Federal Urban Driving Schedule, Beijing Dynamic Stress Test, and Supplemental Federal Test Procedure, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助三点水采纳,获得10
49秒前
1分钟前
三点水发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
善学以致用应助三点水采纳,获得10
2分钟前
2分钟前
百里幻竹发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
sniffgo完成签到 ,获得积分10
3分钟前
LioXH发布了新的文献求助10
5分钟前
LioXH完成签到 ,获得积分10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
chiyudoubao完成签到,获得积分10
6分钟前
6分钟前
7分钟前
情怀应助五香采纳,获得10
7分钟前
五香完成签到,获得积分10
8分钟前
8分钟前
五香发布了新的文献求助10
8分钟前
8分钟前
ll77完成签到,获得积分10
9分钟前
科研通AI2S应助科研通管家采纳,获得30
9分钟前
9分钟前
10分钟前
小脚丫完成签到 ,获得积分10
10分钟前
10分钟前
10分钟前
10分钟前
10分钟前
11分钟前
11分钟前
11分钟前
11分钟前
11分钟前
11分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041963
捐赠科研通 2743768
什么是DOI,文献DOI怎么找? 1505225
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694867