化学
电解质
催化作用
粒径
微晶
吸附
碳纤维
炭黑
粒子(生态学)
无机化学
纳米颗粒
氧气
化学工程
物理化学
电极
结晶学
有机化学
材料科学
复合材料
工程类
地质学
海洋学
复合数
天然橡胶
作者
Markus Nesselberger,Sean Ashton,Josef C. Meier,Ioannis Katsounaros,Karl J. J. Mayrhofer,Matthias Arenz
摘要
The influence of particle size on the oxygen reduction reaction (ORR) activity of Pt was examined in three different electrolytes: two acidic solutions, with varying anionic adsorption strength (HClO4 < H2SO4); and an alkaline solution (KOH). The experiments show that the absolute ORR rate is dependent on the supporting electrolyte; however, the relationship between activity and particle size is rather independent of the supporting electrolyte. The specific activity (SA) toward the ORR rapidly decreases in the order of polycrystalline Pt > unsupported Pt black particles (∼30 nm) > high surface area (HSA) carbon supported Pt nanoparticle catalysts (of various size between 1 and 5 nm). In contrast to previous work, it is highlighted that the difference in SA between the individual HSA carbon supported catalysts (1 to 5 nm) is rather trivial and that the main challenge is to understand the significant differences in SA between the polycrystalline Pt, unsupported Pt particles, and HSA carbon supported Pt catalysts. Finally, a comparison between measured and modeled activities (based on the distribution of surface planes and their SAs) for different particle sizes indicates that such simple models do not capture all aspects of the behavior of HSA carbon supported catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI