Knowledge boosting: a graph-based integration approach with multi-omics data and genomic knowledge for cancer clinical outcome prediction

基因组学 计算生物学 生物信息学 计算机科学 基因 生物 基因组 遗传学
作者
Dokyoon Kim,Je Gun Joung,Kyung-Ah Sohn,Hyunjung Shin,Yu Rang Park,Marylyn D. Ritchie,Ju Han Kim
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:22 (1): 109-120 被引量:81
标识
DOI:10.1136/amiajnl-2013-002481
摘要

Cancer can involve gene dysregulation via multiple mechanisms, so no single level of genomic data fully elucidates tumor behavior due to the presence of numerous genomic variations within or between levels in a biological system. We have previously proposed a graph-based integration approach that combines multi-omics data including copy number alteration, methylation, miRNA, and gene expression data for predicting clinical outcome in cancer. However, genomic features likely interact with other genomic features in complex signaling or regulatory networks, since cancer is caused by alterations in pathways or complete processes.Here we propose a new graph-based framework for integrating multi-omics data and genomic knowledge to improve power in predicting clinical outcomes and elucidate interplay between different levels. To highlight the validity of our proposed framework, we used an ovarian cancer dataset from The Cancer Genome Atlas for predicting stage, grade, and survival outcomes.Integrating multi-omics data with genomic knowledge to construct pre-defined features resulted in higher performance in clinical outcome prediction and higher stability. For the grade outcome, the model with gene expression data produced an area under the receiver operating characteristic curve (AUC) of 0.7866. However, models of the integration with pathway, Gene Ontology, chromosomal gene set, and motif gene set consistently outperformed the model with genomic data only, attaining AUCs of 0.7873, 0.8433, 0.8254, and 0.8179, respectively.Integrating multi-omics data and genomic knowledge to improve understanding of molecular pathogenesis and underlying biology in cancer should improve diagnostic and prognostic indicators and the effectiveness of therapies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助负灵采纳,获得10
刚刚
一平发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
七七发布了新的文献求助10
2秒前
2秒前
脑洞疼应助幸福妙柏采纳,获得10
2秒前
财财发布了新的文献求助20
3秒前
3秒前
NexusExplorer应助轻松元柏采纳,获得10
4秒前
4秒前
晓静完成签到 ,获得积分10
4秒前
4秒前
黙宇循光完成签到 ,获得积分10
6秒前
Akim应助bjwh采纳,获得10
7秒前
淡淡的酸奶完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
21发布了新的文献求助10
9秒前
9秒前
12秒前
13秒前
李国明发布了新的文献求助10
14秒前
ding应助zhoujingya采纳,获得10
15秒前
16秒前
早点毕业完成签到,获得积分10
16秒前
18秒前
18秒前
不鞠一格发布了新的文献求助10
19秒前
今后应助沉小墨采纳,获得10
19秒前
在水一方应助怡然新之采纳,获得10
20秒前
量子星尘发布了新的文献求助10
21秒前
寻道图强应助Takahara2000采纳,获得30
22秒前
清新的S发布了新的文献求助10
23秒前
大模型应助一平采纳,获得10
23秒前
24秒前
金博洋发布了新的文献求助10
25秒前
嘟噜嘟噜应助Tonson采纳,获得40
25秒前
轻松元柏完成签到,获得积分20
26秒前
yihong完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425091
求助须知:如何正确求助?哪些是违规求助? 4539235
关于积分的说明 14166259
捐赠科研通 4456389
什么是DOI,文献DOI怎么找? 2444167
邀请新用户注册赠送积分活动 1435182
关于科研通互助平台的介绍 1412539