Knowledge boosting: a graph-based integration approach with multi-omics data and genomic knowledge for cancer clinical outcome prediction

基因组学 计算生物学 生物信息学 计算机科学 基因 生物 基因组 遗传学
作者
Dokyoon Kim,Je Gun Joung,Kyung-Ah Sohn,Hyunjung Shin,Yu Rang Park,Marylyn D. Ritchie,Ju Han Kim
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:22 (1): 109-120 被引量:81
标识
DOI:10.1136/amiajnl-2013-002481
摘要

Cancer can involve gene dysregulation via multiple mechanisms, so no single level of genomic data fully elucidates tumor behavior due to the presence of numerous genomic variations within or between levels in a biological system. We have previously proposed a graph-based integration approach that combines multi-omics data including copy number alteration, methylation, miRNA, and gene expression data for predicting clinical outcome in cancer. However, genomic features likely interact with other genomic features in complex signaling or regulatory networks, since cancer is caused by alterations in pathways or complete processes.Here we propose a new graph-based framework for integrating multi-omics data and genomic knowledge to improve power in predicting clinical outcomes and elucidate interplay between different levels. To highlight the validity of our proposed framework, we used an ovarian cancer dataset from The Cancer Genome Atlas for predicting stage, grade, and survival outcomes.Integrating multi-omics data with genomic knowledge to construct pre-defined features resulted in higher performance in clinical outcome prediction and higher stability. For the grade outcome, the model with gene expression data produced an area under the receiver operating characteristic curve (AUC) of 0.7866. However, models of the integration with pathway, Gene Ontology, chromosomal gene set, and motif gene set consistently outperformed the model with genomic data only, attaining AUCs of 0.7873, 0.8433, 0.8254, and 0.8179, respectively.Integrating multi-omics data and genomic knowledge to improve understanding of molecular pathogenesis and underlying biology in cancer should improve diagnostic and prognostic indicators and the effectiveness of therapies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NN123发布了新的文献求助10
2秒前
3秒前
精明晓刚完成签到,获得积分10
4秒前
ash发布了新的文献求助10
6秒前
bkagyin应助从容半仙采纳,获得10
7秒前
HughWang完成签到,获得积分10
10秒前
整齐的书白完成签到,获得积分10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
12秒前
tianzml0应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
麻辣香锅应助科研通管家采纳,获得10
13秒前
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
13秒前
tianzml0应助科研通管家采纳,获得10
13秒前
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
Tzihin发布了新的文献求助10
15秒前
YANA发布了新的文献求助10
16秒前
18秒前
科研汪完成签到,获得积分10
22秒前
22秒前
22秒前
Tzihin完成签到,获得积分10
22秒前
Orange应助小新同学采纳,获得10
24秒前
lovestudy发布了新的文献求助10
25秒前
26秒前
27秒前
朴素的道罡完成签到,获得积分10
27秒前
在水一方应助大江大河采纳,获得10
29秒前
30秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164351
求助须知:如何正确求助?哪些是违规求助? 2815193
关于积分的说明 7908079
捐赠科研通 2474802
什么是DOI,文献DOI怎么找? 1317676
科研通“疑难数据库(出版商)”最低求助积分说明 631925
版权声明 602234