Knowledge boosting: a graph-based integration approach with multi-omics data and genomic knowledge for cancer clinical outcome prediction

基因组学 计算生物学 生物信息学 计算机科学 基因 生物 基因组 遗传学
作者
Dokyoon Kim,Je Gun Joung,Kyung-Ah Sohn,Hyunjung Shin,Yu Rang Park,Marylyn D. Ritchie,Ju Han Kim
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:22 (1): 109-120 被引量:81
标识
DOI:10.1136/amiajnl-2013-002481
摘要

Cancer can involve gene dysregulation via multiple mechanisms, so no single level of genomic data fully elucidates tumor behavior due to the presence of numerous genomic variations within or between levels in a biological system. We have previously proposed a graph-based integration approach that combines multi-omics data including copy number alteration, methylation, miRNA, and gene expression data for predicting clinical outcome in cancer. However, genomic features likely interact with other genomic features in complex signaling or regulatory networks, since cancer is caused by alterations in pathways or complete processes.Here we propose a new graph-based framework for integrating multi-omics data and genomic knowledge to improve power in predicting clinical outcomes and elucidate interplay between different levels. To highlight the validity of our proposed framework, we used an ovarian cancer dataset from The Cancer Genome Atlas for predicting stage, grade, and survival outcomes.Integrating multi-omics data with genomic knowledge to construct pre-defined features resulted in higher performance in clinical outcome prediction and higher stability. For the grade outcome, the model with gene expression data produced an area under the receiver operating characteristic curve (AUC) of 0.7866. However, models of the integration with pathway, Gene Ontology, chromosomal gene set, and motif gene set consistently outperformed the model with genomic data only, attaining AUCs of 0.7873, 0.8433, 0.8254, and 0.8179, respectively.Integrating multi-omics data and genomic knowledge to improve understanding of molecular pathogenesis and underlying biology in cancer should improve diagnostic and prognostic indicators and the effectiveness of therapies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
客官们帮帮忙完成签到,获得积分10
刚刚
迅速向日葵应助龙舞星采纳,获得10
刚刚
刚刚
2秒前
南宫映榕完成签到,获得积分10
2秒前
peiqi佩奇完成签到,获得积分10
2秒前
FashionBoy应助3131879775采纳,获得10
2秒前
龙虾发票完成签到,获得积分10
2秒前
zty完成签到,获得积分10
2秒前
3秒前
ZZZ完成签到,获得积分10
3秒前
科研老白完成签到,获得积分10
3秒前
3秒前
Focus完成签到,获得积分20
3秒前
孟严青完成签到,获得积分0
4秒前
量子星尘发布了新的文献求助10
4秒前
合适台灯发布了新的文献求助30
4秒前
5秒前
杨幂发布了新的文献求助10
5秒前
XT666完成签到,获得积分10
5秒前
学术混子完成签到,获得积分10
5秒前
AA完成签到,获得积分10
5秒前
灵巧代柔完成签到,获得积分10
6秒前
糖豆豆吃豆豆完成签到,获得积分10
6秒前
无辜竺完成签到 ,获得积分10
7秒前
8秒前
xiongyuan完成签到,获得积分10
8秒前
司徒不正发布了新的文献求助30
9秒前
追寻的访烟完成签到,获得积分10
9秒前
xiuwen发布了新的文献求助10
10秒前
10秒前
学术混子发布了新的文献求助10
10秒前
无聊的老姆完成签到 ,获得积分10
11秒前
岁月如酒发布了新的文献求助10
11秒前
噜噜噜噜噜完成签到,获得积分10
11秒前
yookia应助一人一般采纳,获得10
11秒前
Hello应助张远幸采纳,获得10
12秒前
FireNow完成签到,获得积分10
12秒前
Muhammad发布了新的文献求助10
13秒前
restudy68完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953688
求助须知:如何正确求助?哪些是违规求助? 3499494
关于积分的说明 11095814
捐赠科研通 3230038
什么是DOI,文献DOI怎么找? 1785859
邀请新用户注册赠送积分活动 869602
科研通“疑难数据库(出版商)”最低求助积分说明 801479