数学
系列(地层学)
核密度估计
条件期望
混合(物理)
核(代数)
固定过程
功能(生物学)
模式(计算机接口)
应用数学
核回归
密度估算
统计
组合数学
非参数统计
古生物学
物理
量子力学
估计员
进化生物学
计算机科学
生物
操作系统
作者
Gérard Collomb,Wolfgang Karl Härdle,S. Hassani
标识
DOI:10.1016/0378-3758(86)90099-6
摘要
Let{(Xi, Yi)}i∈N⊂ E × R, E⊂Rd be a strictly stationary process. The conditional density of Y given X is estimated by the kernel method. It is shown that the (empirically determined) mode of the kernel estimate is uniformly (in a compact) convergent to the conditional mode function when the process is Φ-mixing. This result is applied to a strictly stationary time series {Zk}k∈N which is markovian of order q. It is seen that the so-called model predictor of ZN + 1 from the observed data is converging to the predictor that is based on the full knowledge of the conditional density of ZN + 1 given {Z1,…,ZN}.
科研通智能强力驱动
Strongly Powered by AbleSci AI