Flow past a stationary cylinder becomes unstable at Re. Flow-induced vibrations of an elastically mounted cylinder, of low non-dimensional mass, is investigated at subcritical Reynolds numbers. A stabilized finite-element formulation is used to solve the incompressible flow equations and the cylinder motion in two dimensions. The cylinder is free to vibrate in both the transverse and in-line directions. It is found that, for certain natural frequencies of the spring–mass system, vortex shedding and self-excited vibrations of the cylinder are possible for Re as low as 20. Lock-in is observed in all cases. However, the mass of the oscillator plays a major role in determining the proximity of the vortex-shedding frequency to the natural frequency of the oscillator. A global linear stability analysis (LSA) for the combined flow and oscillator is carried out. The results from the LSA are in good agreement with the two-dimensional direct numerical simulations.