Selecting a linear mixed model for longitudinal data: Repeated measures analysis of variance, covariance pattern model, and growth curve approaches.

阿卡克信息准则 增长曲线(统计) 贝叶斯信息准则 协方差 选型 信息标准 差异(会计) 计量经济学 贝叶斯概率 统计 线性模型 纵向数据 残余物 曲线拟合 数学 偏差信息准则 拟合优度 选择(遗传算法) 计算机科学 贝叶斯推理 数据挖掘 人工智能 算法 业务 会计
作者
Siwei Liu,Michael J. Rovine,Peter C. M. Molenaar
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:17 (1): 15-30 被引量:148
标识
DOI:10.1037/a0026971
摘要

With increasing popularity, growth curve modeling is more and more often considered as the 1st choice for analyzing longitudinal data. Although the growth curve approach is often a good choice, other modeling strategies may more directly answer questions of interest. It is common to see researchers fit growth curve models without considering alterative modeling strategies. In this article we compare 3 approaches for analyzing longitudinal data: repeated measures analysis of variance, covariance pattern models, and growth curve models. As all are members of the general linear mixed model family, they represent somewhat different assumptions about the way individuals change. These assumptions result in different patterns of covariation among the residuals around the fixed effects. In this article, we first indicate the kinds of data that are appropriately modeled by each and use real data examples to demonstrate possible problems associated with the blanket selection of the growth curve model. We then present a simulation that indicates the utility of Akaike information criterion and Bayesian information criterion in the selection of a proper residual covariance structure. The results cast doubt on the popular practice of automatically using growth curve modeling for longitudinal data without comparing the fit of different models. Finally, we provide some practical advice for assessing mean changes in the presence of correlated data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舍予有服完成签到,获得积分10
3秒前
pp完成签到,获得积分10
4秒前
陈兵发布了新的文献求助10
4秒前
北海未暖完成签到,获得积分10
5秒前
唐唐发布了新的文献求助10
6秒前
mc应助rrrrr采纳,获得10
7秒前
yaoweiqi完成签到,获得积分10
8秒前
11秒前
lbyscu完成签到 ,获得积分10
13秒前
疯狂的炳发布了新的文献求助10
14秒前
15秒前
维尼发布了新的文献求助10
19秒前
科目三应助xtt采纳,获得10
20秒前
多情鑫鹏发布了新的文献求助10
21秒前
大佬完成签到,获得积分10
21秒前
21秒前
完美世界应助唐唐采纳,获得10
22秒前
22秒前
铁男卡卡罗特完成签到,获得积分10
23秒前
24秒前
大佬发布了新的文献求助10
24秒前
26秒前
Jasper应助科研通管家采纳,获得10
26秒前
桐桐应助科研通管家采纳,获得10
26秒前
Ava应助科研通管家采纳,获得10
26秒前
Hello应助科研通管家采纳,获得10
26秒前
搜集达人应助科研通管家采纳,获得10
26秒前
研友_VZG7GZ应助科研通管家采纳,获得10
26秒前
上官若男应助科研通管家采纳,获得10
26秒前
26秒前
小蘑菇应助科研通管家采纳,获得30
26秒前
CHENG_2025应助科研通管家采纳,获得10
26秒前
大模型应助科研通管家采纳,获得10
27秒前
27秒前
Jasper应助科研通管家采纳,获得10
27秒前
思源应助科研通管家采纳,获得10
27秒前
wanci应助科研通管家采纳,获得10
27秒前
英姑应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967419
求助须知:如何正确求助?哪些是违规求助? 3512730
关于积分的说明 11164792
捐赠科研通 3247704
什么是DOI,文献DOI怎么找? 1793978
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517