A Nonlinear Mapping Approach to Stain Normalization in Digital Histopathology Images Using Image-Specific Color Deconvolution

污渍 人工智能 规范化(社会学) 计算机科学 计算机视觉 反褶积 模式识别(心理学) 数字图像 预处理器 图像处理 病理 图像(数学) 算法 染色 医学 社会学 人类学
作者
Adnan Mujahid Khan,Nasir Rajpoot,Darren Treanor,Derek Magee
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:61 (6): 1729-1738 被引量:484
标识
DOI:10.1109/tbme.2014.2303294
摘要

Histopathology diagnosis is based on visual examination of the morphology of histological sections under a microscope.With the increasing popularity of digital slide scanners, decision support systems based on the analysis of digital pathology images are in high demand.However, computerized decision support systems are fraught with problems that stem from color variations in tissue appearance due to variation in tissue preparation, variation in stain reactivity from different manufacturers/batches, user or protocol variation, and the use of scanners from different manufacturers.In this paper, we present a novel approach to stain normalization in histopathology images.The method is based on nonlinear mapping of a source image to a target image using a representation derived from color deconvolution.Color deconvolution is a method to obtain stain concentration values when the stain matrix, describing how the color is affected by the stain concentration, is given.Rather than relying on standard stain matrices, which may be inappropriate for a given image, we propose the use of a color-based classifier that incorporates a novel stain color descriptor to calculate image-specific stain matrix.In order to demonstrate the efficacy of the proposed stain matrix estimation and stain normalization methods, they are applied to the problem of tumor segmentation in breast histopathology images.The experimental results suggest that the paradigm of color normalization, as a preprocessing step, can significantly help histological image analysis algorithms to demonstrate stable performance which is insensitive to imaging conditions in general and scanner variations in particular.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣慰问柳完成签到,获得积分10
1秒前
KYJR完成签到,获得积分10
2秒前
昏睡的蟠桃应助maomao采纳,获得200
2秒前
知了完成签到,获得积分10
3秒前
小熊爱吃糖完成签到,获得积分10
3秒前
百川关注了科研通微信公众号
4秒前
heavennew完成签到,获得积分10
4秒前
Hudson完成签到,获得积分10
5秒前
5秒前
5秒前
恭喜恭喜完成签到,获得积分10
6秒前
jing2000yr完成签到,获得积分20
6秒前
zgx完成签到,获得积分10
6秒前
6秒前
奈克罗普陀西斯完成签到,获得积分10
7秒前
orixero应助愉快彩虹采纳,获得10
8秒前
9秒前
冥冥之极为昭昭完成签到,获得积分10
9秒前
十四发布了新的文献求助10
10秒前
木笔朱瑾完成签到 ,获得积分10
11秒前
lishui发布了新的文献求助10
11秒前
MHK完成签到,获得积分10
12秒前
外向的飞雪完成签到,获得积分10
12秒前
13秒前
笑点低的惊蛰完成签到,获得积分10
13秒前
小马甲应助TN采纳,获得10
13秒前
肥鹏完成签到,获得积分10
14秒前
14秒前
小桑桑完成签到,获得积分10
14秒前
南风上北山完成签到,获得积分10
14秒前
15秒前
15秒前
希望天下0贩的0应助kushdw采纳,获得10
15秒前
复杂雪一完成签到,获得积分10
15秒前
小桔青山完成签到,获得积分10
15秒前
LV完成签到,获得积分10
16秒前
16秒前
香蕉觅云应助MHK采纳,获得10
16秒前
SciGPT应助乐观的水桃采纳,获得10
17秒前
yibei发布了新的文献求助10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960404
求助须知:如何正确求助?哪些是违规求助? 3506557
关于积分的说明 11131183
捐赠科研通 3238768
什么是DOI,文献DOI怎么找? 1789884
邀请新用户注册赠送积分活动 871986
科研通“疑难数据库(出版商)”最低求助积分说明 803118