亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spatiotemporal Analysis of Sensor Logs using Growth Ring Maps

计算机科学 可视化 追踪 光学(聚焦) 人工智能 聚类分析 像素 模式识别(心理学) 数据挖掘 编码 空间分析 计算机视觉 地理 物理 光学 操作系统 生物化学 化学 遥感 基因
作者
Peter Michael Bak,Florian Mansmann,Halldór Janetzko,Daniel A. Keim
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:15 (6): 913-920 被引量:61
标识
DOI:10.1109/tvcg.2009.182
摘要

Spatiotemporal analysis of sensor logs is a challenging research field due to three facts: a) traditional two-dimensional maps do not support multiple events to occur at the same spatial location, b) three-dimensional solutions introduce ambiguity and are hard to navigate, and c) map distortions to solve the overlap problem are unfamiliar to most users. This paper introduces a novel approach to represent spatial data changing over time by plotting a number of non-overlapping pixels, close to the sensor positions in a map. Thereby, we encode the amount of time that a subject spent at a particular sensor to the number of plotted pixels. Color is used in a twofold manner; while distinct colors distinguish between sensor nodes in different regions, the colors' intensity is used as an indicator to the temporal property of the subjects' activity. The resulting visualization technique, called Growth Ring Maps, enables users to find similarities and extract patterns of interest in spatiotemporal data by using humans' perceptual abilities. We demonstrate the newly introduced technique on a dataset that shows the behavior of healthy and Alzheimer transgenic, male and female mice. We motivate the new technique by showing that the temporal analysis based on hierarchical clustering and the spatial analysis based on transition matrices only reveal limited results. Results and findings are cross-validated using multidimensional scaling. While the focus of this paper is to apply our visualization for monitoring animal behavior, the technique is also applicable for analyzing data, such as packet tracing, geographic monitoring of sales development, or mobile phone capacity planning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
量子星尘发布了新的文献求助10
4秒前
阿星发布了新的文献求助10
6秒前
6秒前
英俊的铭应助倒逆之蝶采纳,获得10
8秒前
11秒前
qpp完成签到,获得积分10
13秒前
呵呵完成签到,获得积分10
17秒前
17秒前
清浅发布了新的文献求助10
18秒前
雪霁完成签到,获得积分10
18秒前
20秒前
21秒前
30秒前
俊逸的念寒完成签到 ,获得积分10
32秒前
556应助清浅采纳,获得10
38秒前
冷静的振家完成签到,获得积分10
38秒前
领导范儿应助chen采纳,获得10
41秒前
43秒前
45秒前
45秒前
46秒前
fay发布了新的文献求助10
47秒前
48秒前
52秒前
56秒前
chen完成签到,获得积分10
57秒前
火山蜗牛完成签到,获得积分10
59秒前
chen发布了新的文献求助10
1分钟前
1分钟前
王钢铁完成签到,获得积分10
1分钟前
科研通AI2S应助盛夏如花采纳,获得10
1分钟前
1分钟前
小森华东完成签到 ,获得积分10
1分钟前
倒逆之蝶发布了新的文献求助10
1分钟前
在水一方应助帅气的亦玉采纳,获得10
1分钟前
1分钟前
1分钟前
Bin发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664111
求助须知:如何正确求助?哪些是违规求助? 4857755
关于积分的说明 15107180
捐赠科研通 4822567
什么是DOI,文献DOI怎么找? 2581565
邀请新用户注册赠送积分活动 1535750
关于科研通互助平台的介绍 1493984