已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatiotemporal Analysis of Sensor Logs using Growth Ring Maps

计算机科学 可视化 追踪 光学(聚焦) 人工智能 聚类分析 像素 模式识别(心理学) 数据挖掘 编码 空间分析 计算机视觉 地理 物理 光学 操作系统 生物化学 化学 遥感 基因
作者
Peter Michael Bak,Florian Mansmann,Halldór Janetzko,Daniel A. Keim
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:15 (6): 913-920 被引量:61
标识
DOI:10.1109/tvcg.2009.182
摘要

Spatiotemporal analysis of sensor logs is a challenging research field due to three facts: a) traditional two-dimensional maps do not support multiple events to occur at the same spatial location, b) three-dimensional solutions introduce ambiguity and are hard to navigate, and c) map distortions to solve the overlap problem are unfamiliar to most users. This paper introduces a novel approach to represent spatial data changing over time by plotting a number of non-overlapping pixels, close to the sensor positions in a map. Thereby, we encode the amount of time that a subject spent at a particular sensor to the number of plotted pixels. Color is used in a twofold manner; while distinct colors distinguish between sensor nodes in different regions, the colors' intensity is used as an indicator to the temporal property of the subjects' activity. The resulting visualization technique, called Growth Ring Maps, enables users to find similarities and extract patterns of interest in spatiotemporal data by using humans' perceptual abilities. We demonstrate the newly introduced technique on a dataset that shows the behavior of healthy and Alzheimer transgenic, male and female mice. We motivate the new technique by showing that the temporal analysis based on hierarchical clustering and the spatial analysis based on transition matrices only reveal limited results. Results and findings are cross-validated using multidimensional scaling. While the focus of this paper is to apply our visualization for monitoring animal behavior, the technique is also applicable for analyzing data, such as packet tracing, geographic monitoring of sales development, or mobile phone capacity planning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mine_cherry应助生动的巧蕊采纳,获得30
2秒前
5秒前
科研通AI6应助lllll采纳,获得10
7秒前
李爱国应助MM采纳,获得10
8秒前
科研通AI6应助xiaofeiyan采纳,获得10
8秒前
慕青应助Bai采纳,获得10
8秒前
Owen应助请扣一采纳,获得10
8秒前
9秒前
9秒前
善学以致用应助Greyson采纳,获得10
12秒前
14秒前
17秒前
17秒前
今后应助张莜莜采纳,获得30
18秒前
18秒前
烯烃完成签到 ,获得积分10
19秒前
20秒前
卡卡西发布了新的文献求助50
21秒前
22秒前
23秒前
24秒前
上山的吗喽完成签到,获得积分10
25秒前
26秒前
科目三应助syyw2021采纳,获得10
26秒前
大可发布了新的文献求助10
26秒前
花笙米发布了新的文献求助10
28秒前
yangxiaoxu发布了新的文献求助10
29秒前
30秒前
xixixi发布了新的文献求助10
30秒前
不安如容完成签到,获得积分10
30秒前
小蘑菇应助yiwan采纳,获得10
31秒前
jy发布了新的文献求助10
32秒前
成为一只会科研的猫完成签到 ,获得积分10
35秒前
trq1007完成签到,获得积分10
36秒前
鱼羊明完成签到 ,获得积分10
36秒前
孟器完成签到,获得积分10
36秒前
39秒前
41秒前
42秒前
传奇3应助精明一寡采纳,获得10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627406
求助须知:如何正确求助?哪些是违规求助? 4713679
关于积分的说明 14962084
捐赠科研通 4784593
什么是DOI,文献DOI怎么找? 2554835
邀请新用户注册赠送积分活动 1516330
关于科研通互助平台的介绍 1476693