Spatiotemporal Analysis of Sensor Logs using Growth Ring Maps

计算机科学 可视化 追踪 光学(聚焦) 人工智能 聚类分析 像素 模式识别(心理学) 数据挖掘 编码 空间分析 计算机视觉 地理 物理 光学 操作系统 生物化学 化学 遥感 基因
作者
Peter Michael Bak,Florian Mansmann,Halldór Janetzko,Daniel A. Keim
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:15 (6): 913-920 被引量:61
标识
DOI:10.1109/tvcg.2009.182
摘要

Spatiotemporal analysis of sensor logs is a challenging research field due to three facts: a) traditional two-dimensional maps do not support multiple events to occur at the same spatial location, b) three-dimensional solutions introduce ambiguity and are hard to navigate, and c) map distortions to solve the overlap problem are unfamiliar to most users. This paper introduces a novel approach to represent spatial data changing over time by plotting a number of non-overlapping pixels, close to the sensor positions in a map. Thereby, we encode the amount of time that a subject spent at a particular sensor to the number of plotted pixels. Color is used in a twofold manner; while distinct colors distinguish between sensor nodes in different regions, the colors' intensity is used as an indicator to the temporal property of the subjects' activity. The resulting visualization technique, called Growth Ring Maps, enables users to find similarities and extract patterns of interest in spatiotemporal data by using humans' perceptual abilities. We demonstrate the newly introduced technique on a dataset that shows the behavior of healthy and Alzheimer transgenic, male and female mice. We motivate the new technique by showing that the temporal analysis based on hierarchical clustering and the spatial analysis based on transition matrices only reveal limited results. Results and findings are cross-validated using multidimensional scaling. While the focus of this paper is to apply our visualization for monitoring animal behavior, the technique is also applicable for analyzing data, such as packet tracing, geographic monitoring of sales development, or mobile phone capacity planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
glycine发布了新的文献求助10
刚刚
周周发布了新的文献求助10
刚刚
yukky发布了新的文献求助10
刚刚
浮游应助masque采纳,获得20
刚刚
jason完成签到,获得积分0
1秒前
柒月樊霜完成签到,获得积分10
1秒前
Herman完成签到,获得积分10
1秒前
知性的凡双完成签到,获得积分10
1秒前
2秒前
小伊发布了新的文献求助10
2秒前
2秒前
~静完成签到,获得积分10
2秒前
3秒前
在水一方应助Rashalin采纳,获得10
3秒前
3秒前
Ava应助冰山泥采纳,获得10
3秒前
乐观鸣凤完成签到,获得积分10
3秒前
4秒前
4秒前
蛋白完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
6秒前
LZ的脑子发布了新的文献求助20
6秒前
方仔完成签到,获得积分10
6秒前
6秒前
make217完成签到 ,获得积分10
7秒前
CanLiu完成签到,获得积分10
7秒前
7秒前
yukky完成签到,获得积分10
8秒前
8秒前
科研通AI5应助yu采纳,获得30
8秒前
Lucas应助霞霞采纳,获得10
9秒前
方仔发布了新的文献求助10
9秒前
9秒前
9秒前
水晶完成签到,获得积分10
10秒前
科研通AI5应助jyyg采纳,获得10
10秒前
mailure发布了新的文献求助20
11秒前
沉默沛岚发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513