亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Controls of mineral parageneses in the system Fe-Sb-S-O

辉锑矿 下位基因 地质学 矿物学 矿化(土壤科学) 地球化学 化学 无机化学 闪锌矿 土壤科学 黄铁矿 土壤水分
作者
Anthony E. Williams‐Jones,Charles A. Norman
出处
期刊:Economic geology and the bulletin of the Society of Economic Geologists [Society of Economic Geologists]
卷期号:92 (3): 308-324 被引量:92
标识
DOI:10.2113/gsecongeo.92.3.308
摘要

With few exceptions, the world's antimony resources are derived from hypogene deposits of stibnite which form mainly at temperatures between 150 degrees and 300 degrees C. In this paper, we investigate the stability relationships and solubility of minerals in the system Fe-Sb-S-O, in order to understand why stibnite is so dominant and to explain the distribution of the other minerals in hypogene antimony ore deposits. Textural relationships, chemographic analysis, and thermodynamic data are used to develop calibrated petrogenetic grids for this system. These grids indicate that stibnite is the stable antimony phase for a wide range of physicochemical conditions encountered in nature.At temperatures >350 degrees C typical crustal fluids require concentrations of thousands of parts per million Sb (an unlikely occurrence) in order to saturate with stibnite, whereas at temperatures <250 degrees C stibnite may precipitate from fluids containing as little as 1 ppm Sb. This observation, and the fact that stibnite deposits commonly have complex parageneses in which stibnite is relatively late, suggests that decreasing temperature may be an important control of mineralization. Many stibnite deposits, however, have relatively simple parageneses, and a significant proportion of these is hosted by black shales. It is thus possible that, in many cases, reduction was the principal cause of mineralization. This is consistent with the finding that antimony mineral solubility decreases precipitously with f (sub O 2 ) across the kermesite-stibnite boundary for a wide range of pH (< or = neutrality). Other stibnite deposits with relatively simple parageneses (including some of the world's largest deposits) have formed from solutions which apparently equilibrated with limestone and only became saturated with stibnite when they encountered shale. Intense pyritization is an important feature of some of these deposits. At the near-neutral pH conditions and high Sigma a s implied by equilibration with limestone and pyritization, respectively, Sb is transported largely as the species HSb 2 S (super -) 4 , and stibnite deposition is favored by decreasing pH and/or a (sub H 2 S) , both of which are predicted consequences of pyritization.Gudmundite and native antimony only display the ranges of solubility required to form economic deposits at f (sub O 2 ) , pH, and Sigma a s conditions that rarely occur in nature; these minerals are most effectively deposited by decreasing f (sub O 2 ) . Berthierite is only stable over extremely narrow intervals of f (sub O 2 ) , and f (sub S 2 ) , which probably explains why it is seldom found in large concentrations. Hypogene kermesite is also uncommon for similar reasons. At low temperature it replaces stibnite as the stable phase over a broad range of f (sub O 2 ) -pH conditions and consequently is a common supergene mineral. Senarmontite stability is restricted to extremely high f (sub O 2 ) conditions where its solubility is too high to permit hypogene saturation, except at extraordinarily high Sb concentrations such as might occur during remobilization of preexisting antimony mineralization.The common occurrence of high concentrations of gold in stibnite deposits and vice versa may reflect the fact that at pH conditions coinciding with the H 2 S-HS predominance boundary and f (sub O 2 ) conditions marginally below the sulfate predominance field, both Au and Sb can be transported in appreciable concentrations as bisulfide complexes. Deposition of native gold and stibnite is favored by decreasing pH, with or without reduction. It is probably no coincidence that deposits enriched in Sb and Au occur in settings which would have been capable of providing the relatively alkaline conditions necessary for transport of these metals and are hosted by rocks which were potentially able to cause the acidification needed to induce stibnite-gold mineral precipitation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
norberta发布了新的文献求助10
5秒前
MchemG应助科研通管家采纳,获得30
24秒前
KSung完成签到 ,获得积分10
36秒前
48秒前
1分钟前
Hvginn发布了新的文献求助10
1分钟前
1分钟前
灵巧灵松发布了新的文献求助10
1分钟前
Zzz_Carlos完成签到 ,获得积分10
1分钟前
灵巧灵松完成签到,获得积分20
1分钟前
2分钟前
2分钟前
桦奕兮完成签到 ,获得积分10
2分钟前
JrPaleo101完成签到,获得积分10
2分钟前
2分钟前
3分钟前
ljl86400完成签到,获得积分10
3分钟前
Owen应助科研通管家采纳,获得10
4分钟前
赘婿应助科研通管家采纳,获得10
4分钟前
4分钟前
vitamin完成签到 ,获得积分10
4分钟前
4分钟前
加绒完成签到,获得积分10
5分钟前
Hvginn完成签到,获得积分10
5分钟前
星际舟完成签到,获得积分10
6分钟前
斯文败类应助科研通管家采纳,获得10
6分钟前
6分钟前
PhD_Lee73完成签到 ,获得积分0
6分钟前
7分钟前
草木完成签到 ,获得积分20
7分钟前
7分钟前
Lucas应助正直听白采纳,获得10
7分钟前
8分钟前
8分钟前
正直听白发布了新的文献求助10
8分钟前
正直听白完成签到,获得积分10
8分钟前
穿花雪完成签到,获得积分10
8分钟前
tianzml0应助穿花雪采纳,获得30
8分钟前
9分钟前
Shuo完成签到,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568812
求助须知:如何正确求助?哪些是违规求助? 3991266
关于积分的说明 12355576
捐赠科研通 3663334
什么是DOI,文献DOI怎么找? 2018855
邀请新用户注册赠送积分活动 1053263
科研通“疑难数据库(出版商)”最低求助积分说明 940862