ENSEMBLE EMPIRICAL MODE DECOMPOSITION: A NOISE-ASSISTED DATA ANALYSIS METHOD

白噪声 希尔伯特-黄变换 计算机科学 滤波器(信号处理) 数学 噪音(视频) 模式(计算机接口) 人工智能 算法 信号(编程语言) 统计 语音识别 图像(数学) 计算机视觉 程序设计语言 操作系统
作者
Zhaohua Wu,Norden E. Huang
出处
期刊:Advances in Adaptive Data Analysis [World Scientific]
卷期号:01 (01): 1-41 被引量:7555
标识
DOI:10.1142/s1793536909000047
摘要

A new Ensemble Empirical Mode Decomposition (EEMD) is presented. This new approach consists of sifting an ensemble of white noise-added signal (data) and treats the mean as the final true result. Finite, not infinitesimal, amplitude white noise is necessary to force the ensemble to exhaust all possible solutions in the sifting process, thus making the different scale signals to collate in the proper intrinsic mode functions (IMF) dictated by the dyadic filter banks. As EEMD is a time–space analysis method, the added white noise is averaged out with sufficient number of trials; the only persistent part that survives the averaging process is the component of the signal (original data), which is then treated as the true and more physical meaningful answer. The effect of the added white noise is to provide a uniform reference frame in the time–frequency space; therefore, the added noise collates the portion of the signal of comparable scale in one IMF. With this ensemble mean, one can separate scales naturally without any a priori subjective criterion selection as in the intermittence test for the original EMD algorithm. This new approach utilizes the full advantage of the statistical characteristics of white noise to perturb the signal in its true solution neighborhood, and to cancel itself out after serving its purpose; therefore, it represents a substantial improvement over the original EMD and is a truly noise-assisted data analysis (NADA) method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助Forest采纳,获得10
1秒前
2秒前
蒲蒲完成签到 ,获得积分10
3秒前
3秒前
4秒前
NexusExplorer应助lxy采纳,获得10
4秒前
5秒前
tommyliu完成签到,获得积分10
6秒前
6秒前
Snow完成签到,获得积分10
7秒前
TopBanana完成签到 ,获得积分10
7秒前
科研通AI5应助Keylor采纳,获得10
8秒前
8秒前
orixero应助爱吃排骨的猫采纳,获得10
9秒前
9秒前
北陌完成签到,获得积分10
10秒前
齐朕完成签到,获得积分10
12秒前
hdy331完成签到,获得积分10
12秒前
12秒前
羊洋洋发布了新的文献求助10
13秒前
13秒前
风中的跳跳糖完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
16秒前
bkagyin应助科研通管家采纳,获得10
17秒前
烟花应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
劲秉应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
DIngqin应助科研通管家采纳,获得10
18秒前
劲秉应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
19秒前
哦豁发布了新的文献求助10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669971
求助须知:如何正确求助?哪些是违规求助? 3227372
关于积分的说明 9775297
捐赠科研通 2937523
什么是DOI,文献DOI怎么找? 1609371
邀请新用户注册赠送积分活动 760315
科研通“疑难数据库(出版商)”最低求助积分说明 735785