Based on the classical torsional and flexural vibrational theory of a slender rod, the prestressed sandwich torsional-flexural composite mode piezoelectric ceramic ultrasonic transducer is studied. This type of transducer consists of the slender metal rods and the longitudinally and tangentially polarized piezoelectric ceramic rings. The resonance frequency equations for the torsional and flexural vibrations in the transducers are derived. The simultaneous resonance of the torsional and flexural vibrations in the transducer is acquired by correcting the length of the metal slender rods resulting from the piezoelectric ceramic elements. The experimental results show that the measured resonance frequencies of the transducers are in good agreement with the computed ones, and the measured resonance frequencies of the torsional and the flexural vibrations in the composite transducers are also in good agreement with each other.