Intelligible Models for HealthCare

计算机科学 随机森林 机器学习 成对比较 人工智能 朴素贝叶斯分类器 决策树 医疗保健 模块化设计 人工神经网络 逻辑回归 数据挖掘 支持向量机 经济增长 操作系统 经济
作者
Rich Caruana,Yin Lou,Johannes Gehrke,Paul Koch,Marc Sturm,Noémie Elhadad
出处
期刊:Knowledge Discovery and Data Mining 被引量:793
标识
DOI:10.1145/2783258.2788613
摘要

In machine learning often a tradeoff must be made between accuracy and intelligibility. More accurate models such as boosted trees, random forests, and neural nets usually are not intelligible, but more intelligible models such as logistic regression, naive-Bayes, and single decision trees often have significantly worse accuracy. This tradeoff sometimes limits the accuracy of models that can be applied in mission-critical applications such as healthcare where being able to understand, validate, edit, and trust a learned model is important. We present two case studies where high-performance generalized additive models with pairwise interactions (GA2Ms) are applied to real healthcare problems yielding intelligible models with state-of-the-art accuracy. In the pneumonia risk prediction case study, the intelligible model uncovers surprising patterns in the data that previously had prevented complex learned models from being fielded in this domain, but because it is intelligible and modular allows these patterns to be recognized and removed. In the 30-day hospital readmission case study, we show that the same methods scale to large datasets containing hundreds of thousands of patients and thousands of attributes while remaining intelligible and providing accuracy comparable to the best (unintelligible) machine learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
berg发布了新的文献求助10
5秒前
乐乐应助四小时充足睡眠采纳,获得10
5秒前
Hermoine发布了新的文献求助10
6秒前
7秒前
JamesPei应助刘倩倩采纳,获得10
8秒前
学渣本渣发布了新的文献求助10
10秒前
11秒前
潇洒的青丝完成签到,获得积分10
11秒前
11秒前
13秒前
科研通AI2S应助曾经的孤萍采纳,获得10
14秒前
14秒前
gxf发布了新的文献求助10
16秒前
长情小鹿完成签到,获得积分10
16秒前
16秒前
风趣的小鸽子完成签到,获得积分10
17秒前
刘丽梅完成签到 ,获得积分10
17秒前
灵巧白风完成签到,获得积分10
17秒前
香蕉觅云应助齐佑龙采纳,获得10
18秒前
18秒前
雪山飞龙发布了新的文献求助30
19秒前
忧心的香之完成签到,获得积分10
19秒前
斯文败类应助学渣本渣采纳,获得10
19秒前
Zbllllll完成签到,获得积分10
20秒前
星河鱼完成签到,获得积分20
21秒前
Hermoine完成签到,获得积分10
21秒前
Lucas应助诚心的寻凝采纳,获得10
22秒前
TuZhuling发布了新的文献求助10
23秒前
deadpool完成签到,获得积分10
24秒前
24秒前
CCC发布了新的文献求助10
24秒前
gxf完成签到,获得积分20
25秒前
25秒前
26秒前
27秒前
啊哈哈哈发布了新的文献求助10
27秒前
英俊的铭应助吃碗大米饭采纳,获得10
28秒前
爆米花应助调皮的过客采纳,获得10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145294
求助须知:如何正确求助?哪些是违规求助? 2796749
关于积分的说明 7821013
捐赠科研通 2453006
什么是DOI,文献DOI怎么找? 1305347
科研通“疑难数据库(出版商)”最低求助积分说明 627487
版权声明 601464