Calibrating Corn Color from Aerial Photographs to Predict Sidedress Nitrogen Need

播种 扎梅斯 氮气 农学 环境科学 作物 像素 数学 化学 生物 人工智能 计算机科学 有机化学
作者
Peter C. Scharf,John A. Lory
出处
期刊:Agronomy Journal [Wiley]
卷期号:94 (3): 397-404 被引量:122
标识
DOI:10.2134/agronj2002.3970
摘要

Supplemental N need of corn ( Zea mays L.) and other crops can vary substantially within and among fields. Corn color is sensitive to N status and may provide a means to accurately match N fertilizer rates to spatially variable N needs. Our objective was to calibrate the relationship between corn color measured in aerial photographs and sidedress N need. Economic optimum N rate (EONR) at sidedress was determined in 18 yield response experiments located in production cornfields. Low‐altitude, high‐resolution aerial photographs were taken at growth stage V6 or V7 with two types of film: color positive and color infrared. The EONR ranged from 0 to 336 kg N ha −1 . For both types of film, corn color was a significant predictor of EONR at sidedress but only when expressed relative to the color of well‐fertilized corn in the same field and when no N had been applied at planting. Predictions were more accurate using color film than color‐infrared film. Removal of soil pixels from the true‐color aerial images greatly strengthened the relationship between measured color and EONR: R 2 values ranged from 0.27 to 0.31 for single colors measured from the entire image and from 0.60 to 0.79 after the removal of soil pixels. Our results demonstrate that corn color measured in aerial photographs can be used to predict sidedress N need. Obstacles to practical use in guiding variable‐rate sidedressing include: no N can be applied at planting, a high‐N reference strip is needed, and soil pixels must be removed from the image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
candice完成签到,获得积分10
刚刚
3秒前
爆米花应助可耐的语海采纳,获得10
4秒前
4秒前
秋子完成签到,获得积分10
5秒前
10秒前
12秒前
ziwei完成签到,获得积分10
14秒前
15秒前
上官若男应助阳光采纳,获得10
16秒前
xyx完成签到,获得积分10
18秒前
万能图书馆应助淡淡白梦采纳,获得10
18秒前
吃猫的鱼发布了新的文献求助10
18秒前
abc发布了新的文献求助10
20秒前
Mottri完成签到 ,获得积分10
21秒前
www关注了科研通微信公众号
26秒前
27秒前
29秒前
30秒前
34秒前
欣欣发布了新的文献求助10
34秒前
塘仔完成签到,获得积分10
35秒前
36秒前
你好完成签到,获得积分20
37秒前
追寻惋清完成签到 ,获得积分10
37秒前
淡淡白梦发布了新的文献求助10
39秒前
打打应助李志全采纳,获得10
39秒前
xiongdi521发布了新的文献求助10
40秒前
40秒前
40秒前
塘仔发布了新的文献求助30
41秒前
啊莲完成签到,获得积分10
42秒前
张涛发布了新的文献求助10
43秒前
淡淡咖啡豆完成签到 ,获得积分10
46秒前
科研通AI5应助浩二采纳,获得10
47秒前
在水一方应助zzz采纳,获得10
48秒前
49秒前
脑洞疼应助蓝桉采纳,获得10
53秒前
勤劳寒烟完成签到,获得积分10
54秒前
niu应助xiongdi521采纳,获得10
55秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738565
求助须知:如何正确求助?哪些是违规求助? 3281918
关于积分的说明 10026959
捐赠科研通 2998717
什么是DOI,文献DOI怎么找? 1645425
邀请新用户注册赠送积分活动 782788
科研通“疑难数据库(出版商)”最低求助积分说明 749931