已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A facile protocol for the immobilisation of vesicles, virus particles, bacteria, and yeast cells

脂质体 生物素化 生物物理学 化学 小泡 酵母 微流控 纳米技术 生物化学 材料科学 生物
作者
Phillip Kuhn,Klaus Eyer,Tom Robinson,Florian I. Schmidt,Jason Mercer,Petra S. Dittrich
出处
期刊:Integrative Biology [Oxford University Press]
卷期号:4 (12): 1550-1550 被引量:50
标识
DOI:10.1039/c2ib20181j
摘要

Immobilisation of liposomes and cells is often a prerequisite for long-term observations. The most common immobilisation approaches rely on surface modifications, encapsulation in porous materials or trapping in microfluidic channels by means of hurdle-like structures. While these approaches are useful for larger mammalian cells, the immobilisation of smaller organisms like bacteria and yeast or membrane model systems such as liposomes typically requires modification of their outer membrane to ensure that they are stably arrested at a defined position. Here, we present a protocol to immobilise biological objects, which can interact with hydrophobic cholesterol. A water-soluble molecule (cholesterol-PEG-biotin) is used as a linker, which can bind via avidin to biotinylated BSA (bBSA) previously absorbed on a glass surface. For better visualization, bBSA is arranged in a dot pattern by means of microcontact printing, and a microfluidic channel is used for sample supply. We show that our approach can be used to successfully immobilise artificial liposomes of different sizes, native (cell-derived) vesicles, vaccinia virions, Saccharomyces cerevisiae and Escherichia coli, simply by flushing the objects through the channel. Under these conditions, small liposomes and biological objects are stably arrested at high flow rates, while larger cells and liposomes can be released again by application of high shear stress. This protocol can be applied for long-term studies where fluids must be changed repeatedly, for measuring fast kinetics where rapid fluid exchange is essential, and to study the effects of shear stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
华仔应助wwwzh采纳,获得10
3秒前
3秒前
林钟望发布了新的文献求助10
4秒前
深情安青应助哦密密麻麻采纳,获得50
4秒前
WTT完成签到 ,获得积分10
5秒前
z小侠完成签到,获得积分10
6秒前
nlt发布了新的文献求助30
6秒前
充电宝应助wait采纳,获得30
7秒前
8秒前
长孙慕青发布了新的文献求助100
9秒前
10秒前
11秒前
clewaychan完成签到,获得积分10
13秒前
所所应助ah采纳,获得10
13秒前
洛苓轩发布了新的文献求助30
15秒前
萱萱完成签到,获得积分10
15秒前
16秒前
wwwzh发布了新的文献求助10
16秒前
深情安青应助dengy采纳,获得10
16秒前
安然发布了新的文献求助10
16秒前
red完成签到 ,获得积分10
19秒前
z小侠发布了新的文献求助30
20秒前
21秒前
22秒前
24秒前
27秒前
斯咪嘛噻发布了新的文献求助10
27秒前
ah发布了新的文献求助10
28秒前
大个应助谭凯文采纳,获得10
29秒前
31秒前
兰彻发布了新的文献求助10
31秒前
安然发布了新的文献求助10
31秒前
应然忆完成签到 ,获得积分10
32秒前
32秒前
34秒前
情怀应助King16采纳,获得10
34秒前
wwwzh完成签到,获得积分10
35秒前
啊z应助科研通管家采纳,获得10
36秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484112
求助须知:如何正确求助?哪些是违规求助? 3073192
关于积分的说明 9129970
捐赠科研通 2764864
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702131
科研通“疑难数据库(出版商)”最低求助积分说明 701057